論文の概要: Keyword Extraction for Improved Document Retrieval in Conversational
Search
- arxiv url: http://arxiv.org/abs/2109.05979v1
- Date: Mon, 13 Sep 2021 13:55:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-14 21:45:24.754457
- Title: Keyword Extraction for Improved Document Retrieval in Conversational
Search
- Title(参考訳): 会話検索における文書検索の改善のためのキーワード抽出
- Authors: Oleg Borisov, Mohammad Aliannejadi, Fabio Crestani
- Abstract要約: 混合開始型会話検索は大きな利点をもたらす。
会話からユーザーが提供する追加情報を取り入れることには、いくつかの課題がある。
我々は2つの対話型キーワード抽出データセットを収集し、それらを組み込んだエンドツーエンドの文書検索パイプラインを提案する。
- 参考スコア(独自算出の注目度): 10.798537120200006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has shown that mixed-initiative conversational search, based
on the interaction between users and computers to clarify and improve a query,
provides enormous advantages. Nonetheless, incorporating additional information
provided by the user from the conversation poses some challenges. In fact,
further interactions could confuse the system as a user might use words
irrelevant to the information need but crucial for correct sentence
construction in the context of multi-turn conversations. To this aim, in this
paper, we have collected two conversational keyword extraction datasets and
propose an end-to-end document retrieval pipeline incorporating them.
Furthermore, we study the performance of two neural keyword extraction models,
namely, BERT and sequence to sequence, in terms of extraction accuracy and
human annotation. Finally, we study the effect of keyword extraction on the
end-to-end neural IR performance and show that our approach beats
state-of-the-art IR models. We make the two datasets publicly available to
foster research in this area.
- Abstract(参考訳): 近年の研究では,問合せの明確化と改善を目的としたユーザとコンピュータのインタラクションに基づく対話型検索が,大きなメリットをもたらすことが示されている。
それでも、会話からユーザが提供する追加情報を取り込むことには、いくつかの課題がある。
実際、さらに対話することで、ユーザが必要な情報に無関係に単語を使用することができるため、マルチターン会話のコンテキストにおいて正しい文構築に不可欠である。
そこで本研究では,対話型キーワード抽出データセットを2つ集め,それを組み込んだエンドツーエンドの文書検索パイプラインを提案する。
さらに,抽出精度と人間のアノテーションの観点から,BERTとシーケンス to シーケンスという2つのニューラルキーワード抽出モデルの性能について検討した。
最後に、キーワード抽出がエンドツーエンドのニューラルIR性能に与える影響について検討し、我々のアプローチが最先端のIRモデルを上回ることを示す。
この領域の研究を促進すべく、2つのデータセットを公開しています。
関連論文リスト
- Leveraging Inter-Chunk Interactions for Enhanced Retrieval in Large Language Model-Based Question Answering [12.60063463163226]
IIERは、構造、キーワード、セマンティックという3つのタイプの相互作用を考慮し、ドキュメントチャンク間の内部接続をキャプチャする。
対象の質問に基づいて複数のシードノードを特定し、関連するチャンクを反復的に検索して、支持する証拠を収集する。
コンテキストと推論チェーンを洗練し、推論と回答の生成において大きな言語モデルを支援する。
論文 参考訳(メタデータ) (2024-08-06T02:39:55Z) - Effective and Efficient Conversation Retrieval for Dialogue State Tracking with Implicit Text Summaries [48.243879779374836]
LLM (Large Language Models) を用いたDST (Few-shot dialogue state tracking) では,会話検索を効果的かつ効率的に行うことで,学習の迅速化を図っている。
従来は検索キーやクエリとして生の対話コンテキストを使用していた。
会話のテキスト要約に基づいて会話検索を行う。
LLMに基づく会話要約器がクエリとキー生成に採用され、効果的な内部製品探索が可能となる。
論文 参考訳(メタデータ) (2024-02-20T14:31:17Z) - A Deep Reinforcement Learning Approach for Interactive Search with
Sentence-level Feedback [12.712416630402119]
対話型検索は、ユーザからのインタラクションフィードバックを取り入れることで、より良いエクスペリエンスを提供することができる。
既存の最先端(SOTA)システムは、相互作用を組み込むために強化学習(RL)モデルを使用している。
しかしそのようなフィードバックには、広範囲なRLアクションスペース探索と大量の注釈付きデータが必要である。
この研究は、新しいディープQラーニング(DQ)アプローチであるDQrankを提案する。
論文 参考訳(メタデータ) (2023-10-03T18:45:21Z) - SSP: Self-Supervised Post-training for Conversational Search [63.28684982954115]
本稿では,対話型検索モデルを効率的に初期化するための3つの自己教師型タスクを備えた学習後パラダイムであるフルモデル(モデル)を提案する。
提案手法の有効性を検証するために,CAsT-19 と CAsT-20 の2つのベンチマークデータセットを用いて,会話検索タスクにモデルにより訓練後の会話エンコーダを適用した。
論文 参考訳(メタデータ) (2023-07-02T13:36:36Z) - Improve Retrieval-based Dialogue System via Syntax-Informed Attention [46.79601705850277]
文内構文情報と文間構文情報の両方を考慮したSIA, Syntax-Informed Attentionを提案する。
提案手法を広範に使用した3つのベンチマークで評価し,対話応答選択における本手法の一般的な優位性を示す実験結果を得た。
論文 参考訳(メタデータ) (2023-03-12T08:14:16Z) - Towards Relation Extraction From Speech [56.36416922396724]
本稿では,新たな聴取情報抽出タスク,すなわち音声関係抽出を提案する。
本研究では,音声合成システムによる音声関係抽出のための訓練データセットを構築し,英語母語話者によるクラウドソーシングによるテストデータセットを構築した。
我々は,音声関係抽出における課題を識別するための包括的実験を行い,今後の探索に光を当てる可能性がある。
論文 参考訳(メタデータ) (2022-10-17T05:53:49Z) - Improving Keyphrase Extraction with Data Augmentation and Information
Filtering [67.43025048639333]
キーフレーズ抽出はNLPにおける文書理解に不可欠なタスクの1つである。
本稿では,Behanceプラットフォーム上でストリームされたビデオからキーフレーズを抽出するための新しいコーパスと手法を提案する。
論文 参考訳(メタデータ) (2022-09-11T22:38:02Z) - Unsupervised Keyphrase Extraction via Interpretable Neural Networks [27.774524511005172]
テキストのトピックを予測するのに最も有用なキーワードは重要なキーワードである。
InSPECTは、影響力のあるキーフレーズを識別するための自己説明型ニューラルネットワークフレームワークである。
InSPECTは4つの異なるデータセットから教師なし鍵抽出を行う。
論文 参考訳(メタデータ) (2022-03-15T04:30:47Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。