Data Assimilation in the Latent Space of a Neural Network
- URL: http://arxiv.org/abs/2012.12056v1
- Date: Tue, 22 Dec 2020 14:43:50 GMT
- Title: Data Assimilation in the Latent Space of a Neural Network
- Authors: Maddalena Amendola, Rossella Arcucci, Laetitia Mottet, Cesar Quilodran
Casas, Shiwei Fan, Christopher Pain, Paul Linden, Yi-Ke Guo
- Abstract summary: Reduced Order Modelling technique is used to reduce the dimensionality of the problem.
We formulate a new methodology called Latent Assimilation that combines Data Assimilation and Machine Learning.
This methodology can be used for example to predict in real-time the load of virus, such as the SARS-COV-2 in the air by linking it to the concentration of CO2.
- Score: 7.555120710924906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is an urgent need to build models to tackle Indoor Air Quality issue.
Since the model should be accurate and fast, Reduced Order Modelling technique
is used to reduce the dimensionality of the problem. The accuracy of the model,
that represent a dynamic system, is improved integrating real data coming from
sensors using Data Assimilation techniques. In this paper, we formulate a new
methodology called Latent Assimilation that combines Data Assimilation and
Machine Learning. We use a Convolutional neural network to reduce the
dimensionality of the problem, a Long-Short-Term-Memory to build a surrogate
model of the dynamic system and an Optimal Interpolated Kalman Filter to
incorporate real data. Experimental results are provided for CO2 concentration
within an indoor space. This methodology can be used for example to predict in
real-time the load of virus, such as the SARS-COV-2, in the air by linking it
to the concentration of CO2.
Related papers
- Inpainting Computational Fluid Dynamics with Deep Learning [8.397730500554047]
An effective fluid data completion method reduces the required number of sensors in a fluid dynamics experiment.
The ill-posed nature of the fluid data completion problem makes it prohibitively difficult to obtain a theoretical solution.
We employ the vector quantization technique to map both complete and incomplete fluid data spaces onto discrete-valued lower-dimensional representations.
arXiv Detail & Related papers (2024-02-27T03:44:55Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Forecasting through deep learning and modal decomposition in two-phase
concentric jets [2.362412515574206]
This work aims to improve fuel chamber injectors' performance in turbofan engines.
It requires the development of models that allow real-time prediction and improvement of the fuel/air mixture.
arXiv Detail & Related papers (2022-12-24T12:59:41Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
Machine Learning Surrogate Models [10.410970649045943]
We develop a system which combines reduced-order surrogate models with a novel data assimilation technique.
Generalised Latent Assimilation can benefit both the efficiency provided by the reduced-order modelling and the accuracy of data assimilation.
arXiv Detail & Related papers (2022-04-07T15:13:12Z) - Learning the structure of wind: A data-driven nonlocal turbulence model
for the atmospheric boundary layer [0.0]
We develop a novel data-driven approach to modeling the atmospheric boundary layer.
This approach leads to a nonlocal, anisotropic synthetic turbulence model which we refer to as the deep rapid distortion (DRD) model.
arXiv Detail & Related papers (2021-07-23T06:41:33Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
We present KalmanNet, a real-time state estimator that learns from data to carry out Kalman filtering under non-linear dynamics.
We numerically demonstrate that KalmanNet overcomes nonlinearities and model mismatch, outperforming classic filtering methods.
arXiv Detail & Related papers (2021-07-21T12:26:46Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Echo State Network for two-dimensional turbulent moist Rayleigh-B\'enard
convection [0.0]
We apply an echo state network to approximate the evolution of moist Rayleigh-B'enard convection.
We conclude that our model is capable of learning complex dynamics.
arXiv Detail & Related papers (2021-01-27T11:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.