Autonomous Charging of Electric Vehicle Fleets to Enhance Renewable
Generation Dispatchability
- URL: http://arxiv.org/abs/2012.12257v1
- Date: Tue, 22 Dec 2020 18:56:24 GMT
- Title: Autonomous Charging of Electric Vehicle Fleets to Enhance Renewable
Generation Dispatchability
- Authors: Reza Bayani, Saeed D. Manshadi, Guangyi Liu, Yawei Wang, Renchang Dai
- Abstract summary: A total 19% of generation capacity in California is offered by PV units and over some months, more than 10% of this energy is curtailed.
In this research, a novel approach to reduce renewable generation curtailments and increasing system flexibility by means of electric vehicles' charging coordination is represented.
- Score: 1.6251898162696201
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A total 19% of generation capacity in California is offered by PV units and
over some months, more than 10% of this energy is curtailed. In this research,
a novel approach to reduce renewable generation curtailments and increasing
system flexibility by means of electric vehicles' charging coordination is
represented. The presented problem is a sequential decision making process, and
is solved by fitted Q-iteration algorithm which unlike other reinforcement
learning methods, needs fewer episodes of learning. Three case studies are
presented to validate the effectiveness of the proposed approach. These cases
include aggregator load following, ramp service and utilization of
non-deterministic PV generation. The results suggest that through this
framework, EVs successfully learn how to adjust their charging schedule in
stochastic scenarios where their trip times, as well as solar power generation
are unknown beforehand.
Related papers
- Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Solar Power driven EV Charging Optimization with Deep Reinforcement
Learning [6.936743119804558]
Decentralized energy resources, such as Electric Vehicles (EV) and solar photovoltaic systems (PV), are continuously integrated in residential power systems.
This paper aims to address the challenge of domestic EV charging while prioritizing clean, solar energy consumption.
arXiv Detail & Related papers (2022-11-17T11:52:27Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - A Deep Reinforcement Learning-Based Charging Scheduling Approach with
Augmented Lagrangian for Electric Vehicle [2.686271754751717]
This paper formulates the EV charging scheduling problem as a constrained Markov decision process (CMDP)
A novel safe off-policy reinforcement learning (RL) approach is proposed in this paper to solve the CMDP.
Comprehensive numerical experiments with real-world electricity price demonstrate that our proposed algorithm can achieve high solution optimality and constraints compliance.
arXiv Detail & Related papers (2022-09-20T14:56:51Z) - Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian
Processes [57.70237375696411]
The paper proposes a fast data-driven setup that uses the sparse and hybrid Gaussian processes (GP) framework to model the power flow equations with input uncertainty.
We advocate the efficiency of the proposed approach by a numerical study over multiple IEEE test cases showing up to two times faster and more accurate solutions.
arXiv Detail & Related papers (2022-08-30T09:27:59Z) - Improving Operational Efficiency In EV Ridepooling Fleets By Predictive
Exploitation of Idle Times [0.0]
We present a real-time predictive charging method for ridepooling services with a single operator, called Idle Time Exploitation (ITX)
ITX predicts the periods where vehicles are idle and exploits these periods to harvest energy.
It relies on Graph Convolutional Networks and a linear assignment algorithm to devise an optimal pairing of vehicles and charging stations.
arXiv Detail & Related papers (2022-08-30T08:41:40Z) - Data-Driven Stochastic AC-OPF using Gaussian Processes [54.94701604030199]
Integrating a significant amount of renewables into a power grid is probably the most a way to reduce carbon emissions from power grids slow down climate change.
This paper presents an alternative data-driven approach based on the AC power flow equations that can incorporate uncertainty inputs.
The GP approach learns a simple yet non-constrained data-driven approach to close this gap to the AC power flow equations.
arXiv Detail & Related papers (2022-07-21T23:02:35Z) - A Reinforcement Learning Approach for Electric Vehicle Routing Problem
with Vehicle-to-Grid Supply [2.6066825041242367]
We present QuikRouteFinder that uses reinforcement learning (RL) for EV routing to overcome these challenges.
Results from RL are compared against exact formulations based on mixed-integer linear program (MILP) and genetic algorithm (GA) metaheuristics.
arXiv Detail & Related papers (2022-04-12T06:13:06Z) - Computationally efficient joint coordination of multiple electric
vehicle charging points using reinforcement learning [6.37470346908743]
A major challenge in todays power grid is to manage the increasing load from electric vehicle (EV) charging.
We propose a single-step solution that jointly coordinates multiple charging points at once.
We show that our new RL solutions still improve the performance of charging demand coordination by 40-50% compared to a business-as-usual policy.
arXiv Detail & Related papers (2022-03-26T13:42:57Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
A lowering in the cost of batteries and solar PV systems has led to a high uptake of solar battery home systems.
In this work, we use the deep deterministic policy algorithm to optimise the charging and discharging behaviour of a battery within such a system.
arXiv Detail & Related papers (2021-09-10T10:59:14Z) - The impact of online machine-learning methods on long-term investment
decisions and generator utilization in electricity markets [69.68068088508505]
We investigate the impact of eleven offline and five online learning algorithms to predict the electricity demand profile over the next 24h.
We show we can reduce the mean absolute error by 30% using an online algorithm when compared to the best offline algorithm.
We also show that large errors in prediction accuracy have a disproportionate error on investments made over a 17-year time frame.
arXiv Detail & Related papers (2021-03-07T11:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.