Computationally efficient joint coordination of multiple electric
vehicle charging points using reinforcement learning
- URL: http://arxiv.org/abs/2203.14078v1
- Date: Sat, 26 Mar 2022 13:42:57 GMT
- Title: Computationally efficient joint coordination of multiple electric
vehicle charging points using reinforcement learning
- Authors: Manu Lahariya, Nasrin Sadeghianpourhamami and Chris Develder
- Abstract summary: A major challenge in todays power grid is to manage the increasing load from electric vehicle (EV) charging.
We propose a single-step solution that jointly coordinates multiple charging points at once.
We show that our new RL solutions still improve the performance of charging demand coordination by 40-50% compared to a business-as-usual policy.
- Score: 6.37470346908743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major challenge in todays power grid is to manage the increasing load from
electric vehicle (EV) charging. Demand response (DR) solutions aim to exploit
flexibility therein, i.e., the ability to shift EV charging in time and thus
avoid excessive peaks or achieve better balancing. Whereas the majority of
existing research works either focus on control strategies for a single EV
charger, or use a multi-step approach (e.g., a first high level aggregate
control decision step, followed by individual EV control decisions), we rather
propose a single-step solution that jointly coordinates multiple charging
points at once. In this paper, we further refine an initial proposal using
reinforcement learning (RL), specifically addressing computational challenges
that would limit its deployment in practice. More precisely, we design a new
Markov decision process (MDP) formulation of the EV charging coordination
process, exhibiting only linear space and time complexity (as opposed to the
earlier quadratic space complexity). We thus improve upon earlier
state-of-the-art, demonstrating 30% reduction of training time in our case
study using real-world EV charging session data. Yet, we do not sacrifice the
resulting performance in meeting the DR objectives: our new RL solutions still
improve the performance of charging demand coordination by 40-50% compared to a
business-as-usual policy (that charges EV fully upon arrival) and 20-30%
compared to a heuristic policy (that uniformly spreads individual EV charging
over time).
Related papers
- Centralized vs. Decentralized Multi-Agent Reinforcement Learning for Enhanced Control of Electric Vehicle Charging Networks [1.9188272016043582]
We introduce a novel approach for distributed and cooperative charging strategy using a Multi-Agent Reinforcement Learning (MARL) framework.
Our method is built upon the Deep Deterministic Policy Gradient (DDPG) algorithm for a group of EVs in a residential community.
Our results indicate that, despite higher policy variances and training complexity, the CTDE-DDPG framework significantly improves charging efficiency by reducing total variation by approximately %36 and charging cost by around %9.1 on average.
arXiv Detail & Related papers (2024-04-18T21:50:03Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
Multi-agent deep reinforcement learning (MADRL) has proven its effectiveness in EV charging control.
Existing MADRL-based approaches fail to consider the natural power flow of EV charging/discharging in the distribution network.
This paper proposes a novel approach that combines multi-EV charging/discharging with a radial distribution network (RDN) operating under optimal power flow.
arXiv Detail & Related papers (2023-08-17T05:34:46Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
The electric vehicle routing problem (EVRP) has garnered great interest from researchers and industrialists in an attempt to move from fuel-based vehicles to healthier and more efficient electric vehicles (EVs)
Previous works target logistics and delivery-related solutions wherein a homogeneous fleet of commercial EVs have to return to the initial point after making multiple stops.
We perform multi-objective optimization - minimizing the total trip time and the cumulative cost of charging.
arXiv Detail & Related papers (2022-08-26T05:09:59Z) - Optimized cost function for demand response coordination of multiple EV
charging stations using reinforcement learning [6.37470346908743]
We build on previous research on RL, based on a Markov decision process (MDP) to simultaneously coordinate multiple charging stations.
We propose an improved cost function that essentially forces the learned control policy to always fulfill any charging demand that does not offer flexibility.
We rigorously compare the newly proposed batch RL fitted Q-iteration implementation with the original (costly) one, using real-world data.
arXiv Detail & Related papers (2022-03-03T11:22:27Z) - Learning to Operate an Electric Vehicle Charging Station Considering
Vehicle-grid Integration [4.855689194518905]
We propose a novel centralized allocation and decentralized execution (CADE) reinforcement learning (RL) framework to maximize the charging station's profit.
In the centralized allocation process, EVs are allocated to either the waiting or charging spots. In the decentralized execution process, each charger makes its own charging/discharging decision while learning the action-value functions from a shared replay memory.
Numerical results show that the proposed CADE framework is both computationally efficient and scalable, and significantly outperforms the baseline model predictive control (MPC)
arXiv Detail & Related papers (2021-11-01T23:10:28Z) - Risk Adversarial Learning System for Connected and Autonomous Vehicle
Charging [43.42105971560163]
We study the design of a rational decision support system (RDSS) for a connected and autonomous vehicle charging infrastructure (CAV-CI)
In the considered CAV-CI, the distribution system operator (DSO) deploys electric vehicle supply equipment (EVSE) to provide an EV charging facility for human-driven connected vehicles (CVs) and autonomous vehicles (AVs)
The charging request by the human-driven EV becomes irrational when it demands more energy and charging period than its actual need.
We propose a novel risk adversarial multi-agent learning system (ALS) for CAV-CI to solve
arXiv Detail & Related papers (2021-08-02T02:38:15Z) - Intelligent Electric Vehicle Charging Recommendation Based on
Multi-Agent Reinforcement Learning [42.31586065609373]
Electric Vehicle (EV) has become a choice in the modern transportation system due to its environmental and energy sustainability.
In many cities, EV drivers often fail to find the proper spots for charging, because of the limited charging infrastructures and the largely unbalanced charging demands.
We propose a framework, named Multi-Agent Spatiotemporal-temporal ment Learning (MasterReinforce), for intelligently recommending public charging stations.
arXiv Detail & Related papers (2021-02-15T06:23:59Z) - Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits [71.28712804110974]
We propose a general novel multi-armed bandit (MAB) algorithm to reduce disconnectivity time, handover rate, and energy consumption of UAV.
We show how each of these performance indicators (PIs) is improved by adopting a proper range of corresponding learning parameter.
arXiv Detail & Related papers (2020-09-21T12:35:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.