論文の概要: Generative Interventions for Causal Learning
- arxiv url: http://arxiv.org/abs/2012.12265v2
- Date: Sat, 27 Mar 2021 14:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 07:38:32.886721
- Title: Generative Interventions for Causal Learning
- Title(参考訳): 因果学習のための生成的介入
- Authors: Chengzhi Mao, Augustine Cha, Amogh Gupta, Hao Wang, Junfeng Yang, Carl
Vondrick
- Abstract要約: 我々は,新しい視点,背景,シーンコンテキストに一般化したロバストな視覚表現を学ぶためのフレームワークを提案する。
我々は, 生成モデルを用いて, コンバウンディング要因による特徴の介入を行うことができることを示す。
- 参考スコア(独自算出の注目度): 27.371436971655303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a framework for learning robust visual representations that
generalize to new viewpoints, backgrounds, and scene contexts. Discriminative
models often learn naturally occurring spurious correlations, which cause them
to fail on images outside of the training distribution. In this paper, we show
that we can steer generative models to manufacture interventions on features
caused by confounding factors. Experiments, visualizations, and theoretical
results show this method learns robust representations more consistent with the
underlying causal relationships. Our approach improves performance on multiple
datasets demanding out-of-distribution generalization, and we demonstrate
state-of-the-art performance generalizing from ImageNet to ObjectNet dataset.
- Abstract(参考訳): 我々は,新しい視点,背景,シーンコンテキストに一般化したロバストな視覚表現を学ぶためのフレームワークを提案する。
識別モデルは、しばしば自然に発生する散発的な相関を学習し、トレーニング分布外の画像で失敗する。
本稿では, 生成モデルを用いて, コンバウンド要因による特徴の介入を行うことができることを示す。
実験,可視化,理論的結果は,この手法が根底にある因果関係とより整合した堅牢な表現を学習することを示している。
提案手法は分散の一般化を要求する複数のデータセットのパフォーマンスを改善し,imagenet から objectnet データセットへ一般化した最先端の性能を示す。
関連論文リスト
- Towards Deconfounded Image-Text Matching with Causal Inference [36.739004282369656]
本稿では、画像テキストマッチングタスクのための革新的なDecon founded Causal Inference Network(DCIN)を提案する。
DCINは、モダル内およびモダル間共同創設者を分解し、それらを視覚的およびテキスト的特徴のエンコーディングステージに組み込む。
データセットバイアスによって引き起こされる刺激的な相関ではなく、因果関係を学ぶことができる。
論文 参考訳(メタデータ) (2024-08-22T11:04:28Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Specify Robust Causal Representation from Mixed Observations [35.387451486213344]
観測から純粋に表現を学習することは、予測モデルに有利な低次元のコンパクトな表現を学習する問題を懸念する。
本研究では,観測データからこのような表現を学習するための学習手法を開発した。
理論的および実験的に、学習された因果表現で訓練されたモデルは、敵の攻撃や分布シフトの下でより堅牢であることを示す。
論文 参考訳(メタデータ) (2023-10-21T02:18:35Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
解釈可能性の欠如、堅牢性、分布外一般化が、既存の視覚モデルの課題となっている。
人間レベルのエージェントの強い推論能力にインスパイアされた近年では、因果推論パラダイムの開発に多大な努力が注がれている。
本稿では,この新興分野を包括的に概観し,注目し,議論を奨励し,新たな因果推論手法の開発の急激さを先導することを目的とする。
論文 参考訳(メタデータ) (2022-04-26T02:22:28Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
本稿では,観測データから因果表現を学習するために,仮説因果グラフに基づいて相互情報量で学習手順を規則化することを提案する。
この最適化は、因果性に着想を得た学習がサンプルの複雑さを減らし、一般化能力を向上させるという理論的保証を導出する反ファクト的損失を伴う。
論文 参考訳(メタデータ) (2022-02-17T00:38:35Z) - Benchmarking the Robustness of Instance Segmentation Models [3.1287804585804073]
本稿では,実世界の画像の破損や領域外画像の収集に関して,インスタンス分割モデルの包括的評価を行う。
領域外画像評価は、実世界のアプリケーションにおいて重要な側面であるモデルの一般化能力を示している。
具体的には、最先端のネットワークアーキテクチャ、ネットワークバックボーン、正規化レイヤ、スクラッチからトレーニングされたモデル、ImageNet事前訓練ネットワークが含まれる。
論文 参考訳(メタデータ) (2021-09-02T17:50:07Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Counterfactual Generative Networks [59.080843365828756]
画像生成過程を直接監督せずに訓練する独立した因果機構に分解することを提案する。
適切な誘導バイアスを活用することによって、これらのメカニズムは物体の形状、物体の質感、背景を解き放つ。
その結果, 偽画像は, 元の分類タスクにおける性能の低下を伴い, 分散性が向上することが示された。
論文 参考訳(メタデータ) (2021-01-15T10:23:12Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - Understanding Adversarial Examples from the Mutual Influence of Images
and Perturbations [83.60161052867534]
クリーンな画像と敵の摂動を遠ざけることで敵の例を分析し,その相互への影響を分析した。
以上の結果から,画像と普遍摂動の関係に対する新たな視点が示唆された。
我々は、オリジナルトレーニングデータを活用することなく、目標とするユニバーサルアタックの挑戦的なタスクを最初に達成した人物です。
論文 参考訳(メタデータ) (2020-07-13T05:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。