Programmable quantum simulation of 2D antiferromagnets with hundreds of
Rydberg atoms
- URL: http://arxiv.org/abs/2012.12268v1
- Date: Tue, 22 Dec 2020 19:00:00 GMT
- Title: Programmable quantum simulation of 2D antiferromagnets with hundreds of
Rydberg atoms
- Authors: Pascal Scholl, Michael Schuler, Hannah J. Williams, Alexander A.
Eberharter, Daniel Barredo, Kai-Niklas Schymik, Vincent Lienhard, Louis-Paul
Henry, Thomas C. Lang, Thierry Lahaye, Andreas M. L\"auchli, and Antoine
Browaeys
- Abstract summary: Quantum simulation using synthetic systems is a promising route to solve outstanding quantum many-body problems.
Here, we use programmable arrays of individual atoms trapped in optical tweezers to implement an iconic many-body problem.
We push this platform to an unprecedented regime with up to 196 atoms manipulated with high fidelity.
- Score: 43.55994393060723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum simulation using synthetic systems is a promising route to solve
outstanding quantum many-body problems in regimes where other approaches,
including numerical ones, fail. Many platforms are being developed towards this
goal, in particular based on trapped ions, superconducting circuits, neutral
atoms or molecules. All of which face two key challenges: (i) scaling up the
ensemble size, whilst retaining high quality control over the parameters and
(ii) certifying the outputs for these large systems. Here, we use programmable
arrays of individual atoms trapped in optical tweezers, with interactions
controlled by laser-excitation to Rydberg states to implement an iconic
many-body problem, the antiferromagnetic 2D transverse field Ising model. We
push this platform to an unprecedented regime with up to 196 atoms manipulated
with high fidelity. We probe the antiferromagnetic order by dynamically tuning
the parameters of the Hamiltonian. We illustrate the versatility of our
platform by exploring various system sizes on two qualitatively different
geometries, square and triangular arrays. We obtain good agreement with
numerical calculations up to a computationally feasible size (around 100
particles). This work demonstrates that our platform can be readily used to
address open questions in many-body physics.
Related papers
- Hamiltonian Engineering of collective XYZ spin models in an optical cavity [0.0]
Quantum simulation using synthetic quantum systems offers unique opportunities to explore open questions in many-body physics.
Here, we are able to realize an all-to-all interaction with arbitrary quadratic Hamiltonian or effectively an infinite range tunable Heisenberg XYZ model.
The versatility of our platform to include more than two relevant momentum states, combined with the flexibility of the simulated Hamiltonians by adding cavity tones opens rich opportunities for quantum simulation and quantum sensing in matter-wave interferometers and other quantum sensors such as optical clocks and magnetometers.
arXiv Detail & Related papers (2024-02-29T18:26:13Z) - Controlling Markovianity with Chiral Giant Atoms [0.0]
A hallmark of giant-atom physics is their non-Markovian character in the form of self-coherent feedback.
We show that by adjusting the couplings' phases, a giant atom can, counterintuitively, enter an exact Markovian regime.
arXiv Detail & Related papers (2024-02-23T19:00:01Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Microwave-engineering of programmable XXZ Hamiltonians in arrays of
Rydberg atoms [0.0]
We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies.
The atoms are placed in 1D and 2D arrays of optical tweezers, allowing us to study iconic situations in spin physics.
We first benchmark the Hamiltonian engineering for two atoms, and then demonstrate the freezing of the magnetization on an initially magnetized 2D array.
arXiv Detail & Related papers (2021-07-30T07:05:51Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Quantum Computing with Circular Rydberg Atoms [0.0]
We propose a novel approach to Rydberg atom arrays using long-lived circular Rydberg states in optical traps.
We project that arrays of hundreds of circular Rydberg atoms with two-qubit gate errors around $10-5$ can be realized using current technology.
arXiv Detail & Related papers (2021-03-23T18:00:00Z) - Programmable Quantum Annealing Architectures with Ising Quantum Wires [2.808255698770643]
A quantum annealer aims at preparing the ground state of an Ising spin-Hamiltonian quantum mechanically.
We discuss an architecture, where the required spin interactions are implemented via two-port, or in general multi-port quantum Ising wires connecting the spins of interest.
We illustrate the approach for few spin devices solving Max-Cut and prime factorization problems, and discuss the potential scaling to large atom based systems.
arXiv Detail & Related papers (2020-07-31T18:00:01Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.