論文の概要: Gradient-Free Adversarial Attacks for Bayesian Neural Networks
- arxiv url: http://arxiv.org/abs/2012.12640v1
- Date: Wed, 23 Dec 2020 13:19:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 00:11:14.834878
- Title: Gradient-Free Adversarial Attacks for Bayesian Neural Networks
- Title(参考訳): ベイジアンニューラルネットワークに対する勾配自由逆攻撃
- Authors: Matthew Yuan, Matthew Wicker, Luca Laurenti
- Abstract要約: 敵対的な例は、機械学習モデルの堅牢性を理解することの重要性を強調している。
本研究では,BNNの逆例を見つけるために,勾配のない最適化手法を用いる。
- 参考スコア(独自算出の注目度): 9.797319790710713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The existence of adversarial examples underscores the importance of
understanding the robustness of machine learning models. Bayesian neural
networks (BNNs), due to their calibrated uncertainty, have been shown to posses
favorable adversarial robustness properties. However, when approximate Bayesian
inference methods are employed, the adversarial robustness of BNNs is still not
well understood. In this work, we employ gradient-free optimization methods in
order to find adversarial examples for BNNs. In particular, we consider genetic
algorithms, surrogate models, as well as zeroth order optimization methods and
adapt them to the goal of finding adversarial examples for BNNs. In an
empirical evaluation on the MNIST and Fashion MNIST datasets, we show that for
various approximate Bayesian inference methods the usage of gradient-free
algorithms can greatly improve the rate of finding adversarial examples
compared to state-of-the-art gradient-based methods.
- Abstract(参考訳): 敵対的な例の存在は、機械学習モデルの堅牢性を理解することの重要性を強調している。
ベイズニューラルネットワーク(BNN)は、校正された不確実性のため、好適な対向性を持つことを示した。
しかし、近似ベイズ推定法を用いる場合、BNNの対角的堅牢性はまだよく理解されていない。
本研究では,BNNの逆例を見つけるために,勾配のない最適化手法を用いる。
特に,遺伝的アルゴリズム,代理モデル,およびゼロ次最適化手法を考察し,BNNの逆例を見つける目的に適応させる。
MNIST と Fashion MNIST データセットの実証評価では,ベイズ推定法により,勾配のないアルゴリズムを用いることで,最先端の勾配に基づく手法と比較して,逆例の発見率を大幅に向上させることができることを示した。
関連論文リスト
- Evaluating the Robustness of Deep-Learning Algorithm-Selection Models by Evolving Adversarial Instances [0.16874375111244325]
ディープ畳み込みネットワーク(DNN)は、ニューラルネットワークドメインにおけるアルゴリズム選択の実行にますます利用されている。
逆のサンプルは、データセットによって元のインスタンスの最大56%から生成される。
進化的アルゴリズム(EA)を用いて、2つの既存のベンチマークからオンラインビンパッキングのためのインスタンスの摂動を見つけ、トレーニングされたDRNを誤分類させます。
論文 参考訳(メタデータ) (2024-06-24T12:48:44Z) - Verifying Properties of Binary Neural Networks Using Sparse Polynomial Optimization [8.323690755070123]
本稿では,バイナリニューラルネットワーク(BNN)の特性検証手法について検討する。
フル精度のBNNと同様、入力の摂動にも敏感だ。
スパース多項式最適化から導かれる半有限プログラミング緩和を用いた代替手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T11:03:48Z) - Collapsed Inference for Bayesian Deep Learning [36.1725075097107]
本稿では,崩壊サンプルを用いたベイズモデル平均化を行う新しい崩壊予測手法を提案する。
崩壊したサンプルは、近似後部から引き出された数え切れないほど多くのモデルを表す。
提案手法は, スケーラビリティと精度のバランスをとる。
論文 参考訳(メタデータ) (2023-06-16T08:34:42Z) - Improved and Interpretable Defense to Transferred Adversarial Examples
by Jacobian Norm with Selective Input Gradient Regularization [31.516568778193157]
ディープニューラルネットワーク(DNN)の堅牢性を改善するために、AT(Adversarial Training)がよく用いられる。
本研究では,ジャコビアンノルムと選択的入力勾配正規化(J-SIGR)に基づくアプローチを提案する。
実験により、提案したJ-SIGRは、転送された敵攻撃に対するロバスト性を向上し、ニューラルネットワークからの予測が容易に解釈できることが示されている。
論文 参考訳(メタデータ) (2022-07-09T01:06:41Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - Towards Trustworthy Predictions from Deep Neural Networks with Fast
Adversarial Calibration [2.8935588665357077]
本稿では,ドメインシフト後に得られたサンプルに対して,信頼度の高い信頼度を得るための効率的かつ汎用的なモデリング手法を提案する。
本稿では,エントロピー増大損失項と逆キャリブレーション損失項を組み合わせた新しいトレーニング戦略を導入し,この結果が適切に調整され,技術的に信頼できる予測となることを示す。
論文 参考訳(メタデータ) (2020-12-20T13:39:29Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。