論文の概要: Towards Fair Personalization by Avoiding Feedback Loops
- arxiv url: http://arxiv.org/abs/2012.12862v1
- Date: Sun, 20 Dec 2020 19:28:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-01 05:53:33.754624
- Title: Towards Fair Personalization by Avoiding Feedback Loops
- Title(参考訳): フィードバックループの回避による公平なパーソナライズに向けて
- Authors: G\"okhan \c{C}apan, \"Ozge Bozal, \.Ilker G\"undo\u{g}du, Ali Taylan
Cemgil
- Abstract要約: 自己強化フィードバックループは、対話型レコメンデーションシステムにおけるコンテンツのオーバー&アンダー表示の影響と原因である。
代替案への体系的かつ限定的な露出を明示的に含み、あるいは無視する2つのモデルを考察する。
- 参考スコア(独自算出の注目度): 3.180077164673223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-reinforcing feedback loops are both cause and effect of over and/or
under-presentation of some content in interactive recommender systems. This
leads to erroneous user preference estimates, namely, overestimation of
over-presented content while violating the right to be presented of each
alternative, contrary of which we define as a fair system. We consider two
models that explicitly incorporate, or ignore the systematic and limited
exposure to alternatives. By simulations, we demonstrate that ignoring the
systematic presentations overestimates promoted options and underestimates
censored alternatives. Simply conditioning on the limited exposure is a remedy
for these biases.
- Abstract(参考訳): 自己情報フィードバックループは、インタラクティブなレコメンデーションシステムにおけるコンテンツの過剰および/または過小表示の原因と効果の両方である。
これはユーザの好みの誤った推定、すなわち過剰な表示されたコンテンツの過大評価につながると同時に、各選択肢に対して提示する権利を侵害することになります。
代替案への体系的かつ限定的な露出を明示的に含み、あるいは無視する2つのモデルを検討する。
シミュレーションにより, 体系的なプレゼンテーションを無視して, 推奨選択肢を過大評価し, 検閲された代替案を過小評価することを示す。
単に限定された露出の条件付けは、これらのバイアスの修正である。
関連論文リスト
- Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation [67.88747330066049]
きめ細かいフィードバックは、画像の品質と迅速な調整におけるニュアンスドの区別を捉えます。
粗いフィードバックに対する優位性を示すことは、自動ではないことを示す。
きめ細かいフィードバックを抽出し活用する上で重要な課題を特定します。
論文 参考訳(メタデータ) (2024-06-24T17:19:34Z) - Content-Agnostic Moderation for Stance-Neutral Recommendation [13.210645250173997]
コンテンツに依存しないモデレーションは、実際のコンテンツが適格化されることに頼らない。
本稿では,コンテンツ機能に頼らずに,コンテンツレコメンデータからのリコメンデーションを変更する2つの新しいコンテンツ非依存モデレーション手法を提案する。
この結果から,直接コンテンツ情報なしでのスタンス中立性の実現は実現可能であるだけでなく,ユーザのエンゲージメントを著しく低下させることなく,よりバランスのとれた情報的レコメンデーションシステムを開発する上でも有効であることが示唆された。
論文 参考訳(メタデータ) (2024-05-29T09:50:39Z) - Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference [50.95521705711802]
従来の研究では、予測モデルの偏りのない学習を実現するために、選択バイアスに対処することに注力してきた。
本稿では、因果推論の観点から、近隣効果を干渉問題として公式に定式化する。
本稿では,近隣効果の存在下で選択バイアスに対処できる新しい理想的損失を提案する。
論文 参考訳(メタデータ) (2024-04-30T15:20:41Z) - Debiasing Recommendation by Learning Identifiable Latent Confounders [49.16119112336605]
コンバウンディングバイアスは、ユーザの露出とフィードバックの両方に影響を与える未測定変数の存在によって生じる。
既存の手法では,(1) 未測定変数について不確定な仮定を行うか,(2) 潜伏した共同創設者を直接ユーザの露出から推測する。
本稿では、上記の非識別問題の解決にプロキシ変数の集合を利用する新しい方法、すなわち、識別可能なデコノウ(iDCF)を提案する。
論文 参考訳(メタデータ) (2023-02-10T05:10:26Z) - Joint Multisided Exposure Fairness for Recommendation [76.75990595228666]
本稿では,消費者と生産者の両面から共同で問題をモデル化する,露出公正度尺度のファミリを定式化する。
具体的には、双方の利害関係者に対するグループ属性について、個別のユーザや項目を超えて、より体系的なバイアスを推奨するフェアネスの懸念を識別し緩和する。
論文 参考訳(メタデータ) (2022-04-29T19:13:23Z) - Long-term Dynamics of Fairness Intervention in Connection Recommender
Systems [5.048563042541915]
本稿では,Webスケールのソーシャルネットワークが採用するシステムにパターン化されたコネクションレコメンデータシステムについて検討する。
全体としては公平に思われるが、共通露出とユーティリティパリティの介入は、長期的なバイアスの増幅を緩和することができない。
論文 参考訳(メタデータ) (2022-03-30T16:27:48Z) - Correcting the User Feedback-Loop Bias for Recommendation Systems [34.44834423714441]
本稿では,レコメンデーションシステムにおいて,ユーザのフィードバックループバイアスを修正するための系統的かつ動的手法を提案する。
本手法は,各ユーザの動的評価履歴の埋め込みを学習するためのディープラーニングコンポーネントを含む。
実世界のレコメンデーションシステムにおけるユーザフィードバックループバイアスの存在を実証的に検証した。
論文 参考訳(メタデータ) (2021-09-13T15:02:55Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Adversarial Counterfactual Learning and Evaluation for Recommender
System [33.44276155380476]
ユーザ嗜好を検出するために教師付き学習を適用することは、露出情報がない場合に矛盾する結果になる可能性があることを理論的に示す。
ミニマックス経験的リスクの定式化を導入することにより, 基本解を提案する。
論文 参考訳(メタデータ) (2020-11-08T00:40:51Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。