Quantum sensing protocol for motionally chiral Rydberg atoms
- URL: http://arxiv.org/abs/2012.12959v1
- Date: Wed, 23 Dec 2020 20:37:07 GMT
- Title: Quantum sensing protocol for motionally chiral Rydberg atoms
- Authors: Stefan Yoshi Buhmann, Steffen Giesen, Mira Diekmann, Robert Berger,
Stefan Aull, Markus Debatin, Peter Zahariev, Kilian Singer
- Abstract summary: A quantum sensing protocol is proposed for demonstrating the motion-induced chirality of circularly polarised Rydberg atoms.
A cloud of Rydberg atoms is dressed by a bichromatic light field.
The resulting discriminatory chiral energy shifts are estimated using a macroscopic quantum electrodynamics approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A quantum sensing protocol is proposed for demonstrating the motion-induced
chirality of circularly polarised Rydberg atoms. To this end, a cloud of
Rydberg atoms is dressed by a bichromatic light field. This allows to exploit
the long-lived ground states for implementing a Ramsey interferometer in
conjunction with a spin echo pulse sequence for refocussing achiral
interactions. Optimal parameters for the dressing lasers are identified.
Combining a circularly polarised dipole transition in the Rydberg atom with
atomic centre-of-mass motion, the system becomes chiral. The resulting
discriminatory chiral energy shifts induced by a chiral mirror are estimated
using a macroscopic quantum electrodynamics approach.
Related papers
- Spin Squeezing with Magnetic Dipoles [37.93140485169168]
Entanglement can improve the measurement precision of quantum sensors beyond the shot noise limit.
We take advantage of the magnetic dipole-dipole interaction native to most neutral atoms to realize spin-squeezed states.
We achieve 7.1 dB of metrologically useful squeezing using the finite-range spin exchange interactions in an erbium quantum gas microscope.
arXiv Detail & Related papers (2024-11-11T18:42:13Z) - Interacting Circular Rydberg Atoms Trapped in Optical Tweezers [0.0]
Circular Rydberg atoms (CRAs) ideally combine long coherence times and strong interactions.
We report the measurement and characterization of the resonant dipole-dipole interaction between two CRAs.
arXiv Detail & Related papers (2024-07-04T18:24:53Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Spin Squeezing by Rydberg Dressing in an Array of Atomic Ensembles [0.0]
We report on the creation of an array of spin-squeezed ensembles of cesium atoms via Rydberg dressing.
We optimize the coherence of the interactions by a stroboscopic dressing sequence that suppresses super-Poissonian loss.
arXiv Detail & Related papers (2023-03-15T17:55:28Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Quantum Hall states for Rydberg atoms with laser-assisted dipole-dipole
interactions [1.9662978733004601]
We propose a novel scheme with laser-assisted dipole-dipole interactions to realize synthetic magnetic field for Rydberg atoms in a two-dimensional array configuration.
This work opens an avenue for the realization of the highly-sought-after bosonic topological orders using Rydberg atoms.
arXiv Detail & Related papers (2022-04-14T16:28:07Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Phonon-mediated spin-spin interactions between trapped Rydberg atoms [0.0]
We investigate the possibility of creating phonon-mediated spin-spin interactions between neutral atoms trapped in optical tweezers.
We show that these can be used to mediate effective spin-spin interactions or quantum logic gates between the atoms in analogy to schemes employed in trapped ions.
We find arbitrarily high fidelity for the coherent time evolution of the two-atom state even at non-zero temperature.
arXiv Detail & Related papers (2020-08-31T14:05:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.