論文の概要: Predicting Seminal Quality with the Dominance-Based Rough Sets Approach
- arxiv url: http://arxiv.org/abs/2012.13204v1
- Date: Thu, 24 Dec 2020 11:45:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 15:18:39.780427
- Title: Predicting Seminal Quality with the Dominance-Based Rough Sets Approach
- Title(参考訳): 支配に基づくラフセットアプローチによる初等的品質予測
- Authors: Nassim Dehouche
- Abstract要約: 支配に基づくラフセットアプローチのような適切な順序付け手法を用いることで,エキスパートシステムの予測精度を著しく向上させることができることを示す。
UCI機械学習リポジトリからのオープンデータへのリンクを提供し、本論文で行ったクレームの検証/再利用を容易にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper relies on the clinical data of a previously published study. We
identify two very questionable assumptions of said work, namely confusing
evidence of absence and absence of evidence, and neglecting the ordinal nature
of attributes' domains. We then show that using an adequate ordinal methodology
such as the dominance-based rough sets approach (DRSA) can significantly
improve the predictive accuracy of the expert system, resulting in almost
complete accuracy for a dataset of 100 instances. Beyond the performance of
DRSA in solving the diagnosis problem at hand, these results suggest the
inadequacy and triviality of the underlying dataset. We provide links to open
data from the UCI machine learning repository to allow for an easy
verification/refutation of the claims made in this paper.
- Abstract(参考訳): この論文は、以前に発表された研究の臨床的データに依存している。
我々は、その作品の2つの非常に疑わしい仮定、すなわち、証拠の欠如と欠如の曖昧な証拠を特定し、属性のドメインの順序性を無視した。
そこで,DRSA(Dominance-based rough set approach)のような適切な順序付け手法を用いることで,エキスパートシステムの予測精度が大幅に向上し,100インスタンスのデータセットに対してほぼ完全な精度が得られることを示す。
診断問題の解決におけるDRSAの性能以外にも、これらの結果は基礎となるデータセットの不十分さと自明さを示唆している。
本論文では,uci機械学習リポジトリからのオープンデータへのリンクを提供し,請求項の検証・再検証を容易にする。
関連論文リスト
- Investigating the Impact of Hard Samples on Accuracy Reveals In-class Data Imbalance [4.291589126905706]
AutoMLドメインでは、モデルの有効性を評価するための重要な指標として、テスト精度が宣言される。
しかし、主性能指標としての試験精度の信頼性は疑問視されている。
トレーニングセットとテストセット間のハードサンプルの分布は、これらのセットの難易度に影響を与える。
本稿では,ハードサンプル識別法を比較するためのベンチマーク手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T11:38:14Z) - Directly Handling Missing Data in Linear Discriminant Analysis for Enhancing Classification Accuracy and Interpretability [1.4840867281815378]
重み付き欠失線形判別分析(WLDA)と呼ばれる新しい頑健な分類法を提案する。
WLDAは線形判別分析(LDA)を拡張して、計算不要な値でデータセットを処理する。
我々はWLDAの特性を確立するために詳細な理論解析を行い、その説明可能性について徹底的に評価する。
論文 参考訳(メタデータ) (2024-06-30T14:21:32Z) - Adapting Conformal Prediction to Distribution Shifts Without Labels [16.478151550456804]
コンフォーマル予測(CP)により、機械学習モデルは、保証されたカバレッジ率で予測セットを出力できる。
我々の目標は、テストドメインからのラベルなしデータのみを使用して、CP生成予測セットの品質を改善することです。
これは、未ラベルテストデータに対するベースモデルの不確実性に応じてCPのスコア関数を調整する、ECP と EACP と呼ばれる2つの新しい手法によって達成される。
論文 参考訳(メタデータ) (2024-06-03T15:16:02Z) - DAGnosis: Localized Identification of Data Inconsistencies using
Structures [73.39285449012255]
機械学習モデルを確実に使用するためには、デプロイメント時のデータの不整合の特定と適切な処理が不可欠である。
我々は,有向非巡回グラフ(DAG)を用いて,トレーニングセットの特徴分布と非依存性を構造として符号化する。
我々の手法はDAGnosisと呼ばれ、これらの構造的相互作用を利用して、価値があり洞察に富んだデータ中心の結論をもたらす。
論文 参考訳(メタデータ) (2024-02-26T11:29:16Z) - Calibrated Adaptive Teacher for Domain Adaptive Intelligent Fault
Diagnosis [7.88657961743755]
教師なしのドメイン適応(UDA)は、ラベル付きデータがソースドメインで利用可能であり、ラベルなしデータがターゲットドメインでのみ利用可能であるシナリオを扱う。
本稿では,自己学習過程を通じて教師ネットワークの予測を校正する,Calibrated Adaptive Teacher (CAT) と呼ばれる新しいUDA手法を提案する。
論文 参考訳(メタデータ) (2023-12-05T15:19:29Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
異常検出(AD)は、製造から医療まで、さまざまな分野に応用されている。
本研究は、トレーニングデータ全体がラベル付けされておらず、正規サンプルと異常サンプルの両方を含む可能性のある、教師なしAD問題に焦点を当てる。
この問題に対処するため,データリファインメントによる堅牢な一級分類フレームワークを構築した。
本手法は6.3AUCと12.5AUCの平均精度で最先端の1クラス分類法より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-11T01:36:08Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。