論文の概要: I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling
- arxiv url: http://arxiv.org/abs/2012.13391v2
- Date: Mon, 28 Dec 2020 18:32:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2021-04-25 08:28:35.094378
- Title: I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling
- Title(参考訳): 私は魚、特にイルカが好き:対話モデリングにおける矛盾に対処する
- Authors: Yixin Nie, Mary Williamson, Mohit Bansal, Douwe Kiela, Jason Weston
- Abstract要約: DialoguE Contradiction Detection Task(DECODE)と、人間とロボットの矛盾した対話の両方を含む新しい会話データセットを紹介します。
次に、事前学習したトランスフォーマーモデルを用いて、定型的非構造的アプローチと矛盾検出を行う構造的発話に基づくアプローチを比較する。
- 参考スコア(独自算出の注目度): 104.09033240889106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To quantify how well natural language understanding models can capture
consistency in a general conversation, we introduce the DialoguE COntradiction
DEtection task (DECODE) and a new conversational dataset containing both
human-human and human-bot contradictory dialogues. We then compare a structured
utterance-based approach of using pre-trained Transformer models for
contradiction detection with the typical unstructured approach. Results reveal
that: (i) our newly collected dataset is notably more effective at providing
supervision for the dialogue contradiction detection task than existing NLI
data including those aimed to cover the dialogue domain; (ii) the structured
utterance-based approach is more robust and transferable on both analysis and
out-of-distribution dialogues than its unstructured counterpart. We also show
that our best contradiction detection model correlates well with human
judgments and further provide evidence for its usage in both automatically
evaluating and improving the consistency of state-of-the-art generative
chatbots.
- Abstract(参考訳): 自然言語理解モデルが一般的な会話における一貫性をいかに捉えるかを定量化するために、DECODE(DialoguE Contradiction Detection Task)と、人間-人間-ロボットの相反する対話を含む新しい会話データセットを導入する。
次に、事前学習したトランスフォーマーモデルを用いて、定型的非構造的アプローチと矛盾検出を行う構造的発話に基づくアプローチを比較する。
その結果, (i) 新たに収集したデータセットは, 対話領域をカバーすることを目的とした既存のNLIデータよりも, 対話矛盾検出タスクの監視を行うのが効果的である。
また,我々の最善の矛盾検出モデルは,人間の判断とよく相関し,最先端のチャットボットの一貫性を自動評価し,改善する上で,その利用の証拠を提供する。
関連論文リスト
- A Multi-view Discourse Framework for Integrating Semantic and Syntactic Features in Dialog Agents [0.0]
マルチターン対話モデルは,会話の文脈を利用して人間的な応答を生成することを目的としている。
既存の手法はしばしばこれらの発話間の相互作用を無視したり、それら全てを等しく重要なものとして扱う。
本稿では,検索に基づく対話システムにおける応答選択のための談話認識フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-12T04:22:18Z) - Evaluating Robustness of Dialogue Summarization Models in the Presence
of Naturally Occurring Variations [13.749495524988774]
実生活変動が最先端の対話要約モデルに与える影響を系統的に検討する。
発話レベルの摂動は、誤りや言語の変化によって個々の発話を変更するもので、対話レベルの摂動は非形式的交換を加えるものである。
細調整モデルと命令調整モデルの両方が入力のバリエーションの影響を受けており、後者はより感受性が高い。
論文 参考訳(メタデータ) (2023-11-15T05:11:43Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
我々は、多人数対話の会話構造、すなわち、各発話が応答する相手を理解するモデルを事前訓練する。
ラベル付きデータを完全に活用するために,談話構造を潜在変数として扱い,それらを共同で推論し,談話認識モデルを事前学習することを提案する。
論文 参考訳(メタデータ) (2023-05-24T14:06:27Z) - Controllable Mixed-Initiative Dialogue Generation through Prompting [50.03458333265885]
混合開始対話タスクには、情報の繰り返し交換と会話制御が含まれる。
エージェントは、ポリシープランナーが定める特定の対話意図や戦略に従う応答を生成することにより、コントロールを得る。
標準的なアプローチは、これらの意図に基づいて生成条件を実行するために、訓練済みの言語モデルを微調整している。
代わりに、条件生成の微調整に代えて、大きな言語モデルをドロップインで置き換えるように促します。
論文 参考訳(メタデータ) (2023-05-06T23:11:25Z) - STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension [42.57581945778631]
抽象的な対話要約は、自然言語処理における重要なスタンドアロンタスクとみなされてきた。
本稿では,新たな対話要約タスクであるSTRUctured DiaLoguE Summarizationを提案する。
変換器エンコーダ言語モデルの対話理解性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-24T04:39:54Z) - Enhancing Semantic Understanding with Self-supervised Methods for
Abstractive Dialogue Summarization [4.226093500082746]
本稿では,対話要約モデルを訓練するための欠点を補う自己教師型手法を提案する。
我々の原理は,対話文表現の文脈化能力を高めるために,前文対話文を用いて不整合情報の流れを検出することである。
論文 参考訳(メタデータ) (2022-09-01T07:51:46Z) - Learning Locality and Isotropy in Dialogue Modeling [28.743212772593335]
異方性と対話性のある特徴空間を構築するための単純な対話表現キャリブレーション法,すなわちSimDRCを提案する。
実験の結果,本手法は3つの対話課題における現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-29T06:48:53Z) - DEAM: Dialogue Coherence Evaluation using AMR-based Semantic
Manipulations [46.942369532632604]
不整合データ生成のためのAMRに基づく意味操作に依存する対話評価指標を提案する。
実験の結果,DEAMは基準法と比較して,人間の判断と高い相関性が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-18T03:11:35Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Modeling Long Context for Task-Oriented Dialogue State Generation [51.044300192906995]
本稿では,シンプルで効果的な発話タグ付け手法と双方向言語モデルを用いたマルチタスク学習モデルを提案する。
提案手法は,入力対話コンテキストシーケンスが長い場合に,ベースラインの性能が著しく低下する,という問題を解決する。
本実験では,MultiWOZ 2.0データセットにおいて,ベースラインに対して7.03%の相対的改善を実現し,新しい最先端のジョイントゴール精度を52.04%に設定した。
論文 参考訳(メタデータ) (2020-04-29T11:02:25Z) - Variational Hierarchical Dialog Autoencoder for Dialog State Tracking
Data Augmentation [59.174903564894954]
本研究では,この手法を,ゴール指向対話のための対話状態追跡タスクに拡張する。
目的指向ダイアログの完全な側面をモデル化するための変分階層型ダイアログオートエンコーダ(VHDA)を提案する。
各種ダイアログデータセットを用いた実験により、生成データ拡張による下流ダイアログトラッカーのロバスト性の向上が示された。
論文 参考訳(メタデータ) (2020-01-23T15:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。