論文の概要: A Multi-view Discourse Framework for Integrating Semantic and Syntactic Features in Dialog Agents
- arxiv url: http://arxiv.org/abs/2504.09073v1
- Date: Sat, 12 Apr 2025 04:22:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:53:11.753203
- Title: A Multi-view Discourse Framework for Integrating Semantic and Syntactic Features in Dialog Agents
- Title(参考訳): 対話エージェントにおける意味的・統語的特徴の統合のための多視点談話フレームワーク
- Authors: Akanksha Mehndiratta, Krishna Asawa,
- Abstract要約: マルチターン対話モデルは,会話の文脈を利用して人間的な応答を生成することを目的としている。
既存の手法はしばしばこれらの発話間の相互作用を無視したり、それら全てを等しく重要なものとして扱う。
本稿では,検索に基づく対話システムにおける応答選択のための談話認識フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Multiturn dialogue models aim to generate human-like responses by leveraging conversational context, consisting of utterances from previous exchanges. Existing methods often neglect the interactions between these utterances or treat all of them as equally significant. This paper introduces a discourse-aware framework for response selection in retrieval-based dialogue systems. The proposed model first encodes each utterance and response with contextual, positional, and syntactic features using Multi-view Canonical Correlation Analysis (MCCA). It then learns discourse tokens that capture relationships between an utterance and its surrounding turns in a shared subspace via Canonical Correlation Analysis (CCA). This two-step approach effectively integrates semantic and syntactic features to build discourse-level understanding. Experiments on the Ubuntu Dialogue Corpus demonstrate that our model achieves significant improvements in automatic evaluation metrics, highlighting its effectiveness in response selection.
- Abstract(参考訳): マルチターン対話モデルは,従来の交換から発声される会話の文脈を活用することで,人間的な応答を生成することを目的としている。
既存の手法は、これらの発話間の相互作用を無視したり、それら全てを等しく重要なものとして扱うことが多い。
本稿では,検索に基づく対話システムにおける応答選択のための談話認識フレームワークを提案する。
提案手法は,まず,Multi-view Canonical correlation Analysis (MCCA)を用いて,各発話と応答を文脈的,位置的,統語的特徴で符号化する。
その後、カノニカル相関分析(CCA)を通して、発話と周囲の回転の関係を共有部分空間でキャプチャする談話トークンを学習する。
この2段階のアプローチは、意味論的および構文的特徴を効果的に統合し、談話レベルの理解を構築する。
Ubuntuダイアログコーパスの実験では,提案モデルが自動評価指標の大幅な改善を実現し,応答選択の有効性が示された。
関連論文リスト
- Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
本稿では,話題認識の観点から,マルチターン対話をモデル化することを提案する。
対話文のセグメント化アルゴリズムを用いて、対話文を教師なしの方法でトピック集中フラグメントに分割する。
また,トピックセグメントを処理要素として扱う新しいモデルとして,トピック認識デュアルアテンションマッチング(TADAM)ネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T11:03:55Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
本稿では,対話談話特性を最大限に活用し,対話の絡み合いを高めることを提案する。
我々は,会話の意味的文脈をより良くモデル化するために,リッチな構造的特徴を統合する構造認識フレームワークを開発した。
我々の研究は、より広範なマルチスレッド対話アプリケーションを促進する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-06T19:17:47Z) - Improve Retrieval-based Dialogue System via Syntax-Informed Attention [46.79601705850277]
文内構文情報と文間構文情報の両方を考慮したSIA, Syntax-Informed Attentionを提案する。
提案手法を広範に使用した3つのベンチマークで評価し,対話応答選択における本手法の一般的な優位性を示す実験結果を得た。
論文 参考訳(メタデータ) (2023-03-12T08:14:16Z) - Improving Multi-Party Dialogue Discourse Parsing via Domain Integration [25.805553277418813]
マルチパーティ会話は、対話的なターン間のセマンティックレベルの相関によって暗黙的に組織される。
対話談話分析は,基本談話単位間の係り受け構造と関係の予測に応用できる。
対話談話アノテーションを持つ既存のコーパスは、限られたサンプルサイズを持つ特定のドメインから収集される。
論文 参考訳(メタデータ) (2021-10-09T09:36:22Z) - DialogueCSE: Dialogue-based Contrastive Learning of Sentence Embeddings [33.89889949577356]
本稿では,対話型コントラスト学習手法であるDialogueCSEを提案する。
我々は,Microsoft Dialogue Corpus,Jing Dong Dialogue Corpus,E-Commerce Dialogue Corpusの3つの多ターン対話データセットについて評価を行った。
論文 参考訳(メタデータ) (2021-09-26T13:25:41Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
テキスト要約は、NLPにおいて最も困難で興味深い問題の1つである。
本研究では、まず、異なる視点から構造化されていない日々のチャットの会話構造を抽出し、会話を表現するマルチビューシーケンス・ツー・シーケンスモデルを提案する。
大規模対話要約コーパスの実験により,本手法は,自動評価と人的判断の両面から,従来の最先端モデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-04T20:12:44Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
本稿では,トピック認識発話を教師なしでセグメント化して抽出する,多元対話モデリングのための新しいソリューションを提案する。
トピック・アウェア・モデリングは、新たに提案されたトピック・アウェア・セグメンテーション・アルゴリズムとトピック・アウェア・デュアル・アテンション・マッチング(TADAM)ネットワークによって実現されている。
論文 参考訳(メタデータ) (2020-09-26T08:43:06Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。