論文の概要: A Cascaded Residual UNET for Fully Automated Segmentation of Prostate
and Peripheral Zone in T2-weighted 3D Fast Spin Echo Images
- arxiv url: http://arxiv.org/abs/2012.13501v1
- Date: Fri, 25 Dec 2020 03:16:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 04:35:42.202672
- Title: A Cascaded Residual UNET for Fully Automated Segmentation of Prostate
and Peripheral Zone in T2-weighted 3D Fast Spin Echo Images
- Title(参考訳): T2強調3次元高速スピンエコー画像における前立腺領域と末梢領域の完全自動分割のための残留UNET
- Authors: Lavanya Umapathy, Wyatt Unger, Faryal Shareef, Hina Arif, Diego
Martin, Maria Altbach, and Ali Bilgin
- Abstract要約: 前立腺癌の非侵襲的診断には多パラメータMR画像が有効であることが示されている。
本研究では,前立腺と周辺領域のセグメンテーションのための残留ブロック,カスケードMRes-UNETを用いた完全自動深層学習アーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 1.6710577107094644
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-parametric MR images have been shown to be effective in the
non-invasive diagnosis of prostate cancer. Automated segmentation of the
prostate eliminates the need for manual annotation by a radiologist which is
time consuming. This improves efficiency in the extraction of imaging features
for the characterization of prostate tissues. In this work, we propose a fully
automated cascaded deep learning architecture with residual blocks, Cascaded
MRes-UNET, for segmentation of the prostate gland and the peripheral zone in
one pass through the network. The network yields high Dice scores
($0.91\pm.02$), precision ($0.91\pm.04$), and recall scores ($0.92\pm.03$) in
prostate segmentation compared to manual annotations by an experienced
radiologist. The average difference in total prostate volume estimation is less
than 5%.
- Abstract(参考訳): 前立腺癌の非侵襲的診断には多パラメータMR画像が有効であることが示されている。
前立腺の自動セグメンテーションは、時間を要する放射線技師による手動アノテーションの必要性を排除する。
これにより、前立腺組織のキャラクタリゼーションのための画像特徴抽出の効率が向上する。
本研究では,ネットワークを経由する前立腺と末梢領域のセグメンテーションのために,残差ブロックであるカスケードmres-unetを用いた,完全自動カスケード型ディープラーニングアーキテクチャを提案する。
ネットワークは高Diceスコア(0.91\pm.02$)、精度(0.91\pm.04$)、リコールスコア(0.92\pm.03$)を前立腺セグメンテーションで得る。
前立腺総容積推定の平均差は5%未満である。
関連論文リスト
- Multi-modality transrectal ultrasound video classification for
identification of clinically significant prostate cancer [4.896561300855359]
臨床的に重要な前立腺癌(csPCa)のマルチモーダルTRUSビデオから分類するための枠組みを提案する。
提案するフレームワークは,512本のTRUSビデオを含む社内データセットを用いて評価する。
論文 参考訳(メタデータ) (2024-02-14T07:06:30Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - Thoracic Cartilage Ultrasound-CT Registration using Dense Skeleton Graph [49.11220791279602]
一般的なアトラスから個々の患者への計画された経路を正確にマッピングすることは困難である。
アトラスから現在の設定へ計画されたパスを転送できるように、グラフベースの非厳密な登録を提案する。
論文 参考訳(メタデータ) (2023-07-07T18:57:21Z) - Prostate Lesion Estimation using Prostate Masks from Biparametric MRI [0.0]
マルチパラメトリック前立腺MRIの代替としてバイパラメトリックMRIが登場した。
前立腺癌(csPCA)の診断は困難である。
ディープラーニングアルゴリズムはコホート研究において、csPCAを検出する代替ソリューションとして登場した。
論文 参考訳(メタデータ) (2023-01-11T13:20:24Z) - ProstAttention-Net: A deep attention model for prostate cancer
segmentation by aggressiveness in MRI scans [4.964026843682986]
本稿では,前立腺と癌病変をGleason score (GS) group gradingと共同で分割する,新しいエンドツーエンドのマルチクラスネットワークを提案する。
前立腺全体の2.9偽陽性では69.0%$pm$14.5%、末梢領域(PZ)のみを考慮すると1.5偽陽性では70.8%$pm$14.4%である。
論文 参考訳(メタデータ) (2022-11-23T16:21:21Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Comparison of automatic prostate zones segmentation models in MRI images
using U-net-like architectures [0.9786690381850356]
前立腺がんは世界で6番目に大きな死因である。
現在、腫瘍組織を含む関心領域(ROI)のセグメンテーションを専門医が手動で行う。
いくつかの研究は、磁気共鳴画像からROIの特徴を自動的に区分けし抽出するという課題に取り組んできた。
この研究で、6つのディープラーニングモデルを訓練し、ディジョン中央病院とカタルーニャ大学ポリテシカ校から取得したMRI画像のデータセットを用いて分析した。
論文 参考訳(メタデータ) (2022-07-19T18:00:41Z) - Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using
Image Sequence Classification [55.96221340756895]
前立腺外照射療法における経皮的超音波画像誘導は, 患者設定中の各セッションにおけるプローブと前立腺の整合性を必要とする。
本研究では,画像とプローブ位置データの共同分類により,高精度なプローブ配置を確保する方法を示す。
マルチ入力マルチタスクアルゴリズムを用いて、光学的追跡された超音波プローブからの空間座標データを、繰り返しニューラルネットワークを用いて画像クラスシファイアと組み合わせ、リアルタイムで2セットの予測を生成する。
このアルゴリズムは平均(標準偏差)3.7$circ$ (1.2$circ$)の範囲内で最適なプローブアライメントを同定する。
論文 参考訳(メタデータ) (2020-10-06T13:55:02Z) - Anisotropic 3D Multi-Stream CNN for Accurate Prostate Segmentation from
Multi-Planar MRI [7.458812893013963]
我々は,高分解能な等方性前立腺セグメンテーションを生成するために,スキャン方向の追加処理を行う異方性3次元マルチストリームCNNアーキテクチャを提案する。
2つの(双平面)像と3つの(三平面)像の向きをそれぞれ比較する。
論文 参考訳(メタデータ) (2020-09-23T12:56:14Z) - HF-UNet: Learning Hierarchically Inter-Task Relevance in Multi-Task
U-Net for Accurate Prostate Segmentation [56.86396352441269]
我々は,CT画像における前立腺区分けの課題に取り組み,1)高速な局所化のための第1段階,2)正確に前立腺区分けを行う第2段階の2段階の2段階からなる2段階のネットワークを用いた。
前立腺のセグメンテーションを第2段階に正確に分割するために、前立腺のセグメンテーションを多タスク学習フレームワークに定式化し、前立腺のセグメンテーションをセグメンテーションするメインタスクと、前立腺の境界を規定する補助タスクを含む。
対照的に、従来のマルチタスクディープネットワークは、通常、すべてのタスクのパラメータ(つまり特徴表現)の大部分を共有しており、異なるタスクの特異性としてデータ適合性を制限している可能性がある。
論文 参考訳(メタデータ) (2020-05-21T02:53:52Z) - Deep Attentive Features for Prostate Segmentation in 3D Transrectal
Ultrasound [59.105304755899034]
本稿では,経直腸超音波(TRUS)画像における前立腺のセグメンテーションを改善するために,アテンションモジュールを備えた新しい3次元ディープニューラルネットワークを開発した。
我々のアテンションモジュールは、アテンション機構を利用して、異なるレイヤから統合されたマルチレベル特徴を選択的に活用する。
3次元TRUSボリュームに挑戦する実験結果から,本手法は良好なセグメンテーション性能が得られることが示された。
論文 参考訳(メタデータ) (2019-07-03T05:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。