論文の概要: Prostate Lesion Estimation using Prostate Masks from Biparametric MRI
- arxiv url: http://arxiv.org/abs/2301.09673v1
- Date: Wed, 11 Jan 2023 13:20:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-29 13:38:44.280000
- Title: Prostate Lesion Estimation using Prostate Masks from Biparametric MRI
- Title(参考訳): Biparametric MRIによる前立腺病変の評価
- Authors: Ahmet Karagoz, Mustafa Ege Seker, Mert Yergin, Tarkan Atak Kan,
Mustafa Said Kartal, Ercan Karaarslan, Deniz Alis, Ilkay Oksuz
- Abstract要約: マルチパラメトリック前立腺MRIの代替としてバイパラメトリックMRIが登場した。
前立腺癌(csPCA)の診断は困難である。
ディープラーニングアルゴリズムはコホート研究において、csPCAを検出する代替ソリューションとして登場した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Biparametric MRI has emerged as an alternative to multiparametric prostate
MRI, which eliminates the need for the potential harms to the patient due to
the contrast medium. One major issue with biparametric MRI is difficulty to
detect clinically significant prostate cancer (csPCA). Deep learning algorithms
have emerged as an alternative solution to detect csPCA in cohort studies. We
present a workflow which predicts csPCA on biparametric prostate MRI PI-CAI
2022 Challenge with over 10,000 carefully-curated prostate MRI exams. We
propose to to segment the prostate gland first to the central gland (transition
+ central zone) and the peripheral gland. Then we utilize these predcitions in
combination with T2, ADC and DWI images to train an ensemble nnU-Net model.
Finally, we utilize clinical indices PSA and ADC intensity distributions of
lesion regions to reduce the false positives. Our method achieves top results
on open-validation stage with a AUROC of 0.888 and AP of 0.732.
- Abstract(参考訳): マルチパラメトリックMRIの代替としてバイパラメトリックMRI(Biparametric MRI)が登場しており、造影剤による患者への潜在的な害を排除している。
biparametric mriの大きな問題は、臨床的に有意な前立腺癌(cspca)を検出するのが難しいことである。
ディープラーニングアルゴリズムはコホート研究において、csPCAを検出する代替ソリューションとして登場した。
我々は,biparametric prostate mri pi-cai 2022におけるcspcaを予測するワークフローについて述べる。
我々はまず前立腺を中心腺(転移+中心領域)と末梢腺に分節することを提案する。
そして、これらのプレドクチオンとT2, ADC, DWI画像を組み合わせて、アンサンブルnnU-Netモデルを訓練する。
最後に, 病変部位のPSAおよびADC強度分布の臨床的指標を用いて偽陽性を減少させる。
本手法は, auroc 0.888 および ap 0.732 の開裂期において, 最高値を達成する。
関連論文リスト
- Enhancing Trust in Clinically Significant Prostate Cancer Prediction with Multiple Magnetic Resonance Imaging Modalities [61.36288157482697]
米国では、前立腺がんが男性の死因としては2番目に多く、2024年には35,250人が死亡している。
本稿では,複数のMRIモダリティを組み合わせて深層学習モデルを訓練し,臨床的に有意な前立腺癌予測のためのモデルの信頼性を高めることを検討する。
論文 参考訳(メタデータ) (2024-11-07T12:48:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
前立腺MRIの非対位画像翻訳のための新しいアプローチと臨床的に重要なPCaを分類するための不確実性認識トレーニングアプローチを提案する。
提案手法では,無ペアの3.0T多パラメータ前立腺MRIを1.5Tに翻訳し,利用可能なトレーニングデータを増強する。
実験の結果,提案手法は,従来の研究に比べてAUC(Area Under ROC Curve)を20%以上改善することがわかった。
論文 参考訳(メタデータ) (2023-07-02T05:26:54Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - ProstAttention-Net: A deep attention model for prostate cancer
segmentation by aggressiveness in MRI scans [4.964026843682986]
本稿では,前立腺と癌病変をGleason score (GS) group gradingと共同で分割する,新しいエンドツーエンドのマルチクラスネットワークを提案する。
前立腺全体の2.9偽陽性では69.0%$pm$14.5%、末梢領域(PZ)のみを考慮すると1.5偽陽性では70.8%$pm$14.4%である。
論文 参考訳(メタデータ) (2022-11-23T16:21:21Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Perfusion imaging in deep prostate cancer detection from mp-MRI: can we
take advantage of it? [0.0]
深部神経アーキテクチャにおける灌流画像からの情報を統合するための戦略を評価する。
ダイナミックコントラスト造影MR検査からの灌流マップでは,PCa病変のセグメンテーションとグレーディング性能に正の影響が認められた。
論文 参考訳(メタデータ) (2022-07-06T07:55:46Z) - Self-transfer learning via patches: A prostate cancer triage approach
based on bi-parametric MRI [1.3934382972253603]
前立腺癌(PCa)は世界で2番目に多いがんである。
現在のPCa診断経路は、かなりの過剰診断のコストがかかり、不必要な治療とさらなる検査に繋がる。
臨床的に有意な (cS) 病変と非有意な (ncS) 病変を区別するためのパッチベースの事前訓練戦略を提案する。
論文 参考訳(メタデータ) (2021-07-22T17:02:38Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z) - Deep Learning for fully automatic detection, segmentation, and Gleason
Grade estimation of prostate cancer in multiparametric Magnetic Resonance
Images [0.731365367571807]
本稿では,PCa-suspect 患者から前立腺 mpMRI を抽出するDeep Learning に基づく完全自動システムを提案する。
PCaの病変を特定し、それらを分類し、最も可能性の高いGleason grade group(GGG)を予測する。
ProstateXトレーニングシステムのコードはhttps://github.com/OscarPellicer/prostate_lesion_detection.comで公開されている。
論文 参考訳(メタデータ) (2021-03-23T16:08:43Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。