A Proactive Connection Setup Mechanism for Large Quantum Networks
- URL: http://arxiv.org/abs/2012.13566v1
- Date: Fri, 25 Dec 2020 11:48:40 GMT
- Title: A Proactive Connection Setup Mechanism for Large Quantum Networks
- Authors: Dibakar Das, Shiva Kumar Malapaka, Jyotsna Bapat, and Debabrata Das
- Abstract summary: It is necessary to have an efficient mechanism to distribute entanglement among quantum network nodes.
This paper presents a novel way to quicken connection setup between two nodes using historical data.
Results show, with quantum network size increase, the proposed approach improves success rate of connection establishments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum networks use quantum mechanics properties of entanglement and
teleportation to transfer data from one node to another. Hence, it is necessary
to have an efficient mechanism to distribute entanglement among quantum network
nodes. Most of research on entanglement distribution apply current state of
network and do not consider using historical data. This paper presents a novel
way to quicken connection setup between two nodes using historical data and
proactively distribute entanglement in quantum network. Results show, with
quantum network size increase, the proposed approach improves success rate of
connection establishments.
Related papers
- Guarantees on the structure of experimental quantum networks [109.08741987555818]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Statistical properties and repetition rates for a quantum network with
geographical distribution of nodes [0.49157446832511503]
We build upon recent models for quantum networks based on optical fibers by considering the effect of a non-uniform distribution of nodes.
We employ it to compute the repetition rates for entanglement swapping, an essential protocol for quantum communication based on quantum repeaters.
arXiv Detail & Related papers (2023-12-14T17:01:21Z) - Quantum information spreading and scrambling in a distributed quantum
network: A Hasse/Lamport diagrammatic approach [14.308249733521182]
Large-scale quantum networks, known as quantum internet, hold great promises for advanced distributed quantum computing and long-distance quantum communication.
We propose a novel diagrammatic way of visualizing information flow dynamics within the quantum network.
We also propose a quantum information scrambling protocol, where a specific node scrambles secret quantum information across the entire network.
arXiv Detail & Related papers (2023-09-19T06:48:42Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum networks with neutral atom processing nodes [0.42970700836450487]
Quantum networks providing shared entanglement over a mesh of quantum nodes will revolutionize the field of quantum information science.
Recent experimental progress with individual neutral atoms demonstrates a high potential for implementing the crucial components of such networks.
We describe both the functionality requirements and several examples for advanced, large-scale quantum networks composed of neutral atom processing nodes.
arXiv Detail & Related papers (2023-04-04T19:34:13Z) - Adaptive, Continuous Entanglement Generation for Quantum Networks [59.600944425468676]
Quantum networks rely on entanglement between qubits at distant nodes to transmit information.
We present an adaptive scheme that uses information from previous requests to better guide the choice of randomly generated quantum links.
We also explore quantum memory allocation scenarios, where a difference in latency performance implies the necessity of optimal allocation of resources for quantum networks.
arXiv Detail & Related papers (2022-12-17T05:40:09Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Preliminary Study of Connectivity for Quantum Key Distribution Network [3.0454955988938743]
Quantum network is fragile to disturbances when qubits are transmitted through quantum channel.
A metric is needed to describe the reliability of a quantum network to build a robust infrastructure and communication protocols.
arXiv Detail & Related papers (2020-04-23T16:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.