Quantum information spreading and scrambling in a distributed quantum
network: A Hasse/Lamport diagrammatic approach
- URL: http://arxiv.org/abs/2309.10363v1
- Date: Tue, 19 Sep 2023 06:48:42 GMT
- Title: Quantum information spreading and scrambling in a distributed quantum
network: A Hasse/Lamport diagrammatic approach
- Authors: Kiran Adhikari, Christian Deppe
- Abstract summary: Large-scale quantum networks, known as quantum internet, hold great promises for advanced distributed quantum computing and long-distance quantum communication.
We propose a novel diagrammatic way of visualizing information flow dynamics within the quantum network.
We also propose a quantum information scrambling protocol, where a specific node scrambles secret quantum information across the entire network.
- Score: 14.308249733521182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale quantum networks, known as quantum internet, hold great promises
for advanced distributed quantum computing and long-distance quantum
communication. It is essential to have a proper theoretical analysis of the
quantum network and explore new applications and protocols that justify
building such an extensive network. We propose a novel diagrammatic way of
visualizing information flow dynamics within the quantum network, which
preserves the causal relationship between different events at different nodes.
This facilitates synchronization among network nodes, studies the error
propagation, and allows for tracking valuable quantum resources. Additionally,
We propose a quantum information scrambling protocol, where a specific node
scrambles secret quantum information across the entire network. This protocol
ensures that a malicious party would need access to a significant subset of the
network to retrieve the information.
Related papers
- A Brief Introduction to Quantum Network Control [7.952919774651851]
Quantum networking is an emerging area with the potential to transform information processing and communications.
We present a brief introduction to quantum network control, an area dedicated to designing algorithms for distributing entanglement (i.e., entangled qubits)
We present a model for distributing entanglement in a multi-hop quantum network to enable applications such as quantum key distribution and distributed quantum computing.
arXiv Detail & Related papers (2024-07-29T11:21:45Z) - Guarantees on the structure of experimental quantum networks [109.08741987555818]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
We study the limitations on the scaling and robustness of quantum Internet.
We present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes.
For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest.
arXiv Detail & Related papers (2023-08-24T12:32:48Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - On the Characterization of Quantum Flip Stars with Quantum Network
Tomography [11.545489116237102]
Quantum Network Tomography refers to the characterization of channel noise in a quantum network through end-to-end measurements.
We propose network tomography protocols for quantum star networks formed by quantum channels characterized by a single, non-trivial Pauli operator.
Our results further the end-to-end characterization of quantum bit-flip star networks by introducing tomography protocols where state distribution and measurements are designed separately.
arXiv Detail & Related papers (2023-07-12T00:18:15Z) - Quantum networks with neutral atom processing nodes [0.42970700836450487]
Quantum networks providing shared entanglement over a mesh of quantum nodes will revolutionize the field of quantum information science.
Recent experimental progress with individual neutral atoms demonstrates a high potential for implementing the crucial components of such networks.
We describe both the functionality requirements and several examples for advanced, large-scale quantum networks composed of neutral atom processing nodes.
arXiv Detail & Related papers (2023-04-04T19:34:13Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Packet Switching in Quantum Networks: A Path to Quantum Internet [0.0]
We introduce packet switching as a new paradigm for quantum data transmission in future and near-term quantum networks.
We propose a classical-quantum data frame structure and explore methods of frame generation and processing.
We present conceptual designs for a quantum reconfigurable optical add-drop multiplexer to realize the proposed transmission scheme.
arXiv Detail & Related papers (2022-05-16T08:39:05Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - A P4 Data Plane for the Quantum Internet [68.97335984455059]
A new -- quantum -- network stack will be needed to account for the fundamentally new properties of quantum entanglement.
In the non-quantum world, programmable data planes have broken the pattern of ossification of the protocol stack.
We demonstrate how we use P4$_16$ to explore abstractions and device architectures for quantum networks.
arXiv Detail & Related papers (2020-10-21T19:37:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.