Quantum networks with neutral atom processing nodes
- URL: http://arxiv.org/abs/2304.02088v1
- Date: Tue, 4 Apr 2023 19:34:13 GMT
- Title: Quantum networks with neutral atom processing nodes
- Authors: Jacob P. Covey, Harald Weinfurter, Hannes Bernien
- Abstract summary: Quantum networks providing shared entanglement over a mesh of quantum nodes will revolutionize the field of quantum information science.
Recent experimental progress with individual neutral atoms demonstrates a high potential for implementing the crucial components of such networks.
We describe both the functionality requirements and several examples for advanced, large-scale quantum networks composed of neutral atom processing nodes.
- Score: 0.42970700836450487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum networks providing shared entanglement over a mesh of quantum nodes
will revolutionize the field of quantum information science by offering novel
applications in quantum computation, enhanced precision in networks of sensors
and clocks, and efficient quantum communication over large distances. Recent
experimental progress with individual neutral atoms demonstrates a high
potential for implementing the crucial components of such networks. We
highlight latest developments and near-term prospects on how arrays of
individually controlled neutral atoms are suited for both efficient remote
entanglement generation and large-scale quantum information processing, thereby
providing the necessary features for sharing high-fidelity and error-corrected
multi-qubit entangled states between the nodes. We describe both the
functionality requirements and several examples for advanced, large-scale
quantum networks composed of neutral atom processing nodes.
Related papers
- Guarantees on the structure of experimental quantum networks [109.08741987555818]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Quantum information spreading and scrambling in a distributed quantum
network: A Hasse/Lamport diagrammatic approach [14.308249733521182]
Large-scale quantum networks, known as quantum internet, hold great promises for advanced distributed quantum computing and long-distance quantum communication.
We propose a novel diagrammatic way of visualizing information flow dynamics within the quantum network.
We also propose a quantum information scrambling protocol, where a specific node scrambles secret quantum information across the entire network.
arXiv Detail & Related papers (2023-09-19T06:48:42Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
We study the limitations on the scaling and robustness of quantum Internet.
We present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes.
For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest.
arXiv Detail & Related papers (2023-08-24T12:32:48Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Towards real-world quantum networks: a review [3.454055792111304]
Quantum networks play an extremely important role in quantum information science.
One of the key challenges for implementing a quantum network is to distribute entangled flying qubits to spatially separated nodes.
Dedicated efforts around the world for more than twenty years have resulted in both major theoretical and experimental progress towards entangling quantum nodes.
arXiv Detail & Related papers (2022-01-13T05:53:13Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.