論文の概要: Three-dimensional Simultaneous Shape and Pose Estimation for Extended
Objects Using Spherical Harmonics
- arxiv url: http://arxiv.org/abs/2012.13580v1
- Date: Fri, 25 Dec 2020 14:11:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 04:30:49.815462
- Title: Three-dimensional Simultaneous Shape and Pose Estimation for Extended
Objects Using Spherical Harmonics
- Title(参考訳): 球面高調波を用いた拡張物体の3次元同時形状とポーズ推定
- Authors: Gerhard Kurz, Florian Faion, Florian Pfaff, Antonio Zea, Uwe D.
Hanebeck
- Abstract要約: 本研究では,3次元拡張物体のポーズと形状を同時推定する手法を提案する。
提案手法の鍵となるアイデアは、2次元ケースでフーリエ級数を使う方法に類似した球状高調波を用いて物体の形状を表現することである。
- 参考スコア(独自算出の注目度): 4.357338639836869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new recursive method for simultaneous estimation of both the
pose and the shape of a three-dimensional extended object. The key idea of the
presented method is to represent the shape of the object using spherical
harmonics, similar to the way Fourier series can be used in the two-dimensional
case. This allows us to derive a measurement equation that can be used within
the framework of nonlinear filters such as the UKF. We provide both simulative
and experimental evaluations of the novel techniques.
- Abstract(参考訳): 本稿では3次元拡張オブジェクトのポーズと形状を同時に推定する新しい再帰的手法を提案する。
提案手法の重要な考え方は, 2次元の場合におけるフーリエ級数の使用法と同様の,球面高調波を用いて物体の形状を表現することである。
これにより、UKFのような非線形フィルタの枠組みで用いられる測定方程式を導出することができる。
我々は,新しい手法のシミュレーションと実験的評価の両方を提供する。
関連論文リスト
- GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
本稿では,視覚的観察を通して物理特性(システム同定)を推定する問題について検討する。
物理特性推定における幾何学的ガイダンスを容易にするために,我々は新しいハイブリッドフレームワークを提案する。
本研究では,3次元ガウス点集合としてオブジェクトを復元する動き分解に基づく動的3次元ガウスフレームワークを提案する。
抽出された物体表面に加えて、ガウスインフォームド連続体はシミュレーション中の物体マスクのレンダリングを可能にする。
論文 参考訳(メタデータ) (2024-06-21T07:37:17Z) - Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation [50.376243444909136]
本稿では,3次元形状の対応と形状の両面を統一的に予測する枠組みを提案する。
我々は、スペクトル領域と空間領域の両方の形状を地図化するために、奥行き関数写像フレームワークと古典的な曲面変形モデルを組み合わせる。
論文 参考訳(メタデータ) (2024-02-29T07:26:23Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Neural Wavelet-domain Diffusion for 3D Shape Generation, Inversion, and
Manipulation [54.09274684734721]
本稿では,ウェーブレット領域における連続的な暗黙表現の直接生成モデルを用いて,3次元形状の生成,反転,操作を行う新しい手法を提案する。
具体的には、1対の粗い係数と細部係数の体積を持つコンパクトなウェーブレット表現を提案し、トランケートされた符号付き距離関数とマルチスケールの生体直交ウェーブレットを介して3次元形状を暗黙的に表現する。
エンコーダネットワークを共同でトレーニングすることで,形状を反転させる潜在空間を学習することができる。
論文 参考訳(メタデータ) (2023-02-01T02:47:53Z) - Learning Interpretable Dynamics from Images of a Freely Rotating 3D
Rigid Body [1.143707646428782]
画像列から3次元回転力学を推定・予測する物理インフォームドニューラルネットワークモデルを提案する。
回転立方体と正方形プリズムを一様・一様・非一様に配列した新しい回転剛体データセットに対して,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2022-09-23T00:35:22Z) - Neural Implicit Surface Reconstruction using Imaging Sonar [38.73010653104763]
画像ソナー(FLS)を用いた物体の高密度3次元再構成手法を提案する。
シーン幾何を点雲や体積格子としてモデル化する従来の手法と比較して、幾何をニューラル暗黙関数として表現する。
我々は,実データと合成データを用いて実験を行い,本アルゴリズムは,従来よりも高精細なFLS画像から高精細な表面形状を再構成し,それに伴うメモリオーバーヘッドに悩まされることを実証した。
論文 参考訳(メタデータ) (2022-09-17T02:23:09Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
本稿では,2パラメータ統計力学系における熱力学関数と位相境界の再構成手法を提案する。
提案手法を用いて,IsingモデルとTASEPの分割関数と位相図を正確に再構成する。
論文 参考訳(メタデータ) (2022-05-18T17:11:23Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
我々は、数値コードをより安価でプロジェクションベースのサロゲートモデルに置き換えている。
このモデルは、数値的な方法で必要となるすべての前の電場を計算することなく、所定の時間で電場を近似することができる。
このモデルでは, シミュレーションパラメータの狭い範囲におけるデータの摂動問題において, 高品質な再構成が示されており, 大規模な入力データに利用することができる。
論文 参考訳(メタデータ) (2021-06-01T08:46:04Z) - Shape Estimation for Elongated Deformable Object using B-spline Chained
Multiple Random Matrices Model [5.94069939063928]
伸縮変形可能な物体の幾何学的特性をモデル化するために, B-スプライン鎖型多元ランダム行列表現を提案する。
予測最大化(EM)法は、伸長変形可能な物体の形状を推定するために導出される。
提案アルゴリズムは, シナリオ内での伸長変形可能な物体の形状推定に有用である。
論文 参考訳(メタデータ) (2020-04-10T21:15:54Z) - Instant recovery of shape from spectrum via latent space connections [33.83258865005668]
ラプラシアンスペクトルから形状を復元する最初の学習法を提案する。
自動エンコーダが与えられた場合、我々のモデルはサイクル整合モジュールの形で潜在ベクトルを固有値列にマッピングする。
我々のデータ駆動型アプローチは、計算コストのごく一部でより正確な結果を提供しながら、事前の手法で必要となるアドホック正規化器の必要性を置き換える。
論文 参考訳(メタデータ) (2020-03-14T00:48:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。