論文の概要: Instant recovery of shape from spectrum via latent space connections
- arxiv url: http://arxiv.org/abs/2003.06523v4
- Date: Wed, 4 Nov 2020 21:53:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 20:10:39.142345
- Title: Instant recovery of shape from spectrum via latent space connections
- Title(参考訳): 潜在空間接続によるスペクトルからの形状の瞬時復元
- Authors: Riccardo Marin, Arianna Rampini, Umberto Castellani, Emanuele
Rodol\`a, Maks Ovsjanikov, Simone Melzi
- Abstract要約: ラプラシアンスペクトルから形状を復元する最初の学習法を提案する。
自動エンコーダが与えられた場合、我々のモデルはサイクル整合モジュールの形で潜在ベクトルを固有値列にマッピングする。
我々のデータ駆動型アプローチは、計算コストのごく一部でより正確な結果を提供しながら、事前の手法で必要となるアドホック正規化器の必要性を置き換える。
- 参考スコア(独自算出の注目度): 33.83258865005668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the first learning-based method for recovering shapes from
Laplacian spectra. Given an auto-encoder, our model takes the form of a
cycle-consistent module to map latent vectors to sequences of eigenvalues. This
module provides an efficient and effective linkage between spectrum and
geometry of a given shape. Our data-driven approach replaces the need for
ad-hoc regularizers required by prior methods, while providing more accurate
results at a fraction of the computational cost. Our learning model applies
without modifications across different dimensions (2D and 3D shapes alike),
representations (meshes, contours and point clouds), as well as across
different shape classes, and admits arbitrary resolution of the input spectrum
without affecting complexity. The increased flexibility allows us to provide a
proxy to differentiable eigendecomposition and to address notoriously difficult
tasks in 3D vision and geometry processing within a unified framework,
including shape generation from spectrum, mesh super-resolution, shape
exploration, style transfer, spectrum estimation from point clouds,
segmentation transfer and point-to-point matching.
- Abstract(参考訳): ラプラシアンスペクトルから形状を復元する最初の学習法を提案する。
自動エンコーダが与えられた場合、我々のモデルはサイクル整合モジュールの形で潜在ベクトルを固有値列にマッピングする。
このモジュールは、所定の形状のスペクトルと幾何学の間の効率的かつ効果的なリンクを提供する。
我々のデータ駆動型アプローチは、計算コストのごく一部でより正確な結果を提供しながら、事前の手法で必要となるアドホック正規化器の必要性を置き換える。
我々の学習モデルは、異なる次元(2次元と3次元の形状も同様)、表現(メシ、輪郭、点雲)、異なる形状のクラスにまたがって適用され、複雑さに影響を与えることなく入力スペクトルの任意の分解能を認める。
柔軟性の向上により,スペクトルからの形状生成,メッシュ超解像,形状探索,スタイル移動,点雲からのスペクトル推定,分割移動,点対点マッチングなど,統合されたフレームワーク内での3次元視覚および幾何学処理における極めて難しい課題に対処できる。
関連論文リスト
- Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation [50.376243444909136]
本稿では,3次元形状の対応と形状の両面を統一的に予測する枠組みを提案する。
我々は、スペクトル領域と空間領域の両方の形状を地図化するために、奥行き関数写像フレームワークと古典的な曲面変形モデルを組み合わせる。
論文 参考訳(メタデータ) (2024-02-29T07:26:23Z) - Geometrically Consistent Partial Shape Matching [50.29468769172704]
3次元形状の対応を見つけることは、コンピュータビジョンとグラフィックスにおいて重要な問題である。
しばしば無視されるが、整合幾何学の重要な性質は整合性である。
本稿では,新しい整数型線形計画部分形状整合式を提案する。
論文 参考訳(メタデータ) (2023-09-10T12:21:42Z) - Learning Modulated Transformation in GANs [69.95217723100413]
生成逆数ネットワーク(GAN)のジェネレータに、変調変換モジュール(Modulated transformation module, MTM)と呼ばれるプラグアンドプレイモジュールを装備する。
MTMは、可変位置で畳み込み操作を適用可能な潜在符号の制御下で空間オフセットを予測する。
挑戦的なTaiChiデータセット上での人為的な生成に向けて、StyleGAN3のFIDを21.36から13.60に改善し、変調幾何変換の学習の有効性を実証した。
論文 参考訳(メタデータ) (2023-08-29T17:51:22Z) - Neural Wavelet-domain Diffusion for 3D Shape Generation, Inversion, and
Manipulation [54.09274684734721]
本稿では,ウェーブレット領域における連続的な暗黙表現の直接生成モデルを用いて,3次元形状の生成,反転,操作を行う新しい手法を提案する。
具体的には、1対の粗い係数と細部係数の体積を持つコンパクトなウェーブレット表現を提案し、トランケートされた符号付き距離関数とマルチスケールの生体直交ウェーブレットを介して3次元形状を暗黙的に表現する。
エンコーダネットワークを共同でトレーニングすることで,形状を反転させる潜在空間を学習することができる。
論文 参考訳(メタデータ) (2023-02-01T02:47:53Z) - Representing Shape Collections with Alignment-Aware Linear Models [17.635846912560627]
3次元点雲の古典的表現を線形形状モデルとして再考する。
私たちの重要な洞察は、ディープラーニングを活用して、アフィン変換として形状の集合を表現することです。
論文 参考訳(メタデータ) (2021-09-03T16:28:34Z) - Learning to generate shape from global-local spectra [0.0]
我々は,この手法を,いわゆる形状-スペクトルパラダイムの最近の進歩の上に構築する。
我々は、スペクトルを自然なものとみなし、形状の多様性を符号化するために表現を使用する準備ができている。
提案手法は既存手法や代替手法と比較して改善された。
論文 参考訳(メタデータ) (2021-08-04T16:39:56Z) - 3D Shape Registration Using Spectral Graph Embedding and Probabilistic
Matching [24.41451985857662]
本稿では,3次元形状登録の問題に対処し,スペクトルグラフ理論と確率的マッチングに基づく新しい手法を提案する。
この章の主な貢献は、スペクトルグラフマッチング法をラプラシアン埋め込みと組み合わせることで、非常に大きなグラフに拡張することである。
論文 参考訳(メタデータ) (2021-06-21T15:02:31Z) - Disentangling Geometric Deformation Spaces in Generative Latent Shape
Models [5.582957809895198]
3Dオブジェクトの完全な表現には、解釈可能な方法で変形の空間を特徴づける必要がある。
本研究では,物体形状の空間を剛性方向,非剛性ポーズ,内在的な形状に分解する3次元形状の不整合の事前生成モデルを改善する。
得られたモデルは生の3D形状からトレーニングできる。
論文 参考訳(メタデータ) (2021-02-27T06:54:31Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) 問題は、複数のフレームにまたがる2次元特徴対応から変形物体の3次元形状を復元することを目的としている。
提案手法は,ノイズに対する精度,スケーラビリティ,堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2020-06-15T09:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。