論文の概要: Graph data modelling for outcome prediction in oropharyngeal cancer
patients
- arxiv url: http://arxiv.org/abs/2310.02931v1
- Date: Wed, 4 Oct 2023 16:09:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 14:08:15.299241
- Title: Graph data modelling for outcome prediction in oropharyngeal cancer
patients
- Title(参考訳): 口腔癌患者の予後予測のためのグラフデータモデリング
- Authors: Nithya Bhasker, Stefan Leger, Alexander Zwanenburg, Chethan Babu
Reddy, Sebastian Bodenstedt, Steffen L\"ock, Stefanie Speidel
- Abstract要約: グラフニューラルネットワーク(GNN)は、疾患の分類と予後予測のタスクにおいて、医療分野でますます人気が高まっている。
口腔咽頭癌(OPC)患者の2次予後予測のためのインダクティブ・ラーニング・セットアップで検討した患者ハイパーグラフ・ネットワーク(PHGN)を提案する。
- 参考スコア(独自算出の注目度): 38.37247384790338
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) are becoming increasingly popular in the medical
domain for the tasks of disease classification and outcome prediction. Since
patient data is not readily available as a graph, most existing methods either
manually define a patient graph, or learn a latent graph based on pairwise
similarities between the patients. There are also hypergraph neural network
(HGNN)-based methods that were introduced recently to exploit potential higher
order associations between the patients by representing them as a hypergraph.
In this work, we propose a patient hypergraph network (PHGN), which has been
investigated in an inductive learning setup for binary outcome prediction in
oropharyngeal cancer (OPC) patients using computed tomography (CT)-based
radiomic features for the first time. Additionally, the proposed model was
extended to perform time-to-event analyses, and compared with GNN and baseline
linear models.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、疾患分類や予後予測のタスクにおいて、医療分野でますます人気が高まっている。
患者データはグラフとして簡単には利用できないため、既存のほとんどの方法は手動で患者グラフを定義するか、患者間のペアの類似性に基づいて潜在グラフを学ぶ。
ハイパーグラフニューラルネットワーク(hgnn)ベースの手法も最近導入され、ハイパーグラフとして表現することで患者間の高次関係を活用している。
本研究では, 口腔咽頭癌 (OPC) 患者の放射線学的特徴をCT(Computed tomography) に応用した2次予後予測のための誘導学習装置として, 患者ハイパーグラフネットワーク (PHGN) を提案する。
さらに,提案モデルを拡張して時系列解析を行い,GNNやベースライン線形モデルと比較した。
関連論文リスト
- AdaMedGraph: Adaboosting Graph Neural Networks for Personalized Medicine [31.424781716926848]
我々は,複数の患者類似性グラフを構築するために重要な特徴を自動選択するアルゴリズム,我が社の提案するアルゴリズムを提案する。
実世界の医療シナリオを2つ評価し,優れた成績を示した。
論文 参考訳(メタデータ) (2023-11-24T06:27:25Z) - Graph AI in Medicine [9.733108180046555]
グラフニューラルネットワーク(GNN)は、関係によって相互接続されたノードとしてモダリティを視聴することで、データを一様に処理する。
GNNは、グラフ関係で定義された局所的なニューラル変換を通じて情報をキャプチャする。
知識グラフは、モデル駆動の洞察と医療知識を整合させることで、解釈可能性を高めることができる。
論文 参考訳(メタデータ) (2023-10-20T19:01:01Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
グラフは、医療領域において、非ユークリッドな非ユークリッドデータをユビキタスに表現し、分析するための強力なツールである。
近年の研究では、入力データサンプル間の関係を考慮すると、下流タスクに正の正の正則化効果があることが示されている。
タンパク質分類と脳イメージングのためのニューラルネットワークアーキテクチャであるGraph-in-Graph(GiG)を提案する。
論文 参考訳(メタデータ) (2022-04-01T10:01:37Z) - Heterogeneous Similarity Graph Neural Network on Electronic Health
Records [74.66674469510251]
非均質な類似度グラフニューラルネットワーク(HSGNN)を提案し、新しい異種GNNでEHRを分析します。
フレームワークは2つの部分から構成される: 1つは前処理方式で、もう1つはエンドツーエンドのGNNである。
GNNは全ての同質グラフを入力として取り、それら全てを1つのグラフに融合して予測する。
論文 参考訳(メタデータ) (2021-01-17T23:14:29Z) - Predicting Patient Outcomes with Graph Representation Learning [0.47248250311484113]
類似した患者をグラフでつなげることで,診断を時間的情報として活用する。
LSTM-GNは、eICUデータベース上の滞在予測タスクの長さでLSTMのみのベースラインを上回っていることを実証します。
論文 参考訳(メタデータ) (2021-01-11T15:04:07Z) - Deep Learning with Heterogeneous Graph Embeddings for Mortality
Prediction from Electronic Health Records [2.2859570135269625]
我々は、電子健康記録データ上に不均一グラフモデル(HGM)をトレーニングし、結果の埋め込みベクトルをコナールニューラルネットワーク(CNN)モデルに追加情報として使用して、院内死亡率を予測する。
CNNモデルにHGMを追加すると、死亡予測精度が最大4%向上することがわかった。
論文 参考訳(メタデータ) (2020-12-28T02:27:09Z) - Latent-Graph Learning for Disease Prediction [44.26665239213658]
我々は,GCNの下流における疾患分類の課題に向けて,一つの最適なグラフを学習することが可能であることを示す。
一般的に用いられているスペクトルGCNアプローチとは異なり、我々のGCNは空間的かつ誘導的であり、これまで見られなかった患者も推測できる。
論文 参考訳(メタデータ) (2020-03-27T08:18:01Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。