論文の概要: Uncertainty Estimation with Deep Learning for Rainfall-Runoff Modelling
- arxiv url: http://arxiv.org/abs/2012.14295v1
- Date: Tue, 15 Dec 2020 20:52:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 05:08:06.165578
- Title: Uncertainty Estimation with Deep Learning for Rainfall-Runoff Modelling
- Title(参考訳): 降雨流出モデルにおける深層学習による不確かさ推定
- Authors: Daniel Klotz, Frederik Kratzert, Martin Gauch, Alden Keefe Sampson,
G\"unter Klambauer, Sepp Hochreiter, Grey Nearing
- Abstract要約: 不確実性推定は水文予測に不可欠である。
深層学習では正確で正確で確実な不確実性推定が可能であることを示す。
- 参考スコア(独自算出の注目度): 4.080450230687111
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep Learning is becoming an increasingly important way to produce accurate
hydrological predictions across a wide range of spatial and temporal scales.
Uncertainty estimations are critical for actionable hydrological forecasting,
and while standardized community benchmarks are becoming an increasingly
important part of hydrological model development and research, similar tools
for benchmarking uncertainty estimation are lacking. We establish an
uncertainty estimation benchmarking procedure and present four Deep Learning
baselines, out of which three are based on Mixture Density Networks and one is
based on Monte Carlo dropout. Additionally, we provide a post-hoc model
analysis to put forward some qualitative understanding of the resulting models.
Most importantly however, we show that accurate, precise, and reliable
uncertainty estimation can be achieved with Deep Learning.
- Abstract(参考訳): 深層学習は、幅広い空間的および時間的スケールにわたって正確な水文予測を行うための、ますます重要な方法になりつつある。
不確実性推定は実行可能な水文予測には不可欠であり、標準化されたコミュニティベンチマークは水文モデルの開発と研究においてますます重要になっているが、不確実性推定をベンチマークするための同様のツールが不足している。
我々は,不確実性推定ベンチマーク手法を確立し,その内3つは混合密度ネットワーク,1つはモンテカルロのドロップアウトに基づくディープラーニングベースラインを提示する。
さらに,結果モデルの定性的理解を進めるために,ポストホックモデル解析も提供する。
しかし最も重要なことは、Deep Learningによって正確で正確で確実な不確実性推定が達成できることである。
関連論文リスト
- A Critical Synthesis of Uncertainty Quantification and Foundation Models in Monocular Depth Estimation [13.062551984263031]
絶対距離の予測を伴う計量深度推定は、特定の課題を提起する。
我々は、現在最先端のDepthAnythingV2基盤モデルを用いて、5つの異なる不確実性定量化手法を融合する。
ガウス陰性対数損失(GNLL)による微調整は特に有望なアプローチである。
論文 参考訳(メタデータ) (2025-01-14T15:13:00Z) - Deep Modeling of Non-Gaussian Aleatoric Uncertainty [4.969887562291159]
ディープラーニングは、ロボット推定システムにおけるアレタリック不確実性を正確にモデル化する、有望な新しい方法を提供する。
本研究では,条件付き確率密度モデリングのための3つの基礎的深層学習手法を定式化し,評価する。
以上の結果から,これらの深層学習手法は複雑な不確実性パターンを正確に把握し,評価システムの信頼性と堅牢性を向上させる可能性を強調した。
論文 参考訳(メタデータ) (2024-05-30T22:13:17Z) - Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
for Earth System Science Applications [0.32302664881848275]
エビデンシャル・ディープ・ラーニング(Evidential Deep Learning)は、パラメトリック・ディープ・ラーニングを高次分布に拡張する手法である。
本研究では,明らかなニューラルネットワークから得られる不確実性とアンサンブルから得られる不確実性を比較する。
本研究では,従来の手法に匹敵する予測精度を実現するとともに,両方の不確実性源をしっかりと定量化しながら,明らかな深層学習モデルを示す。
論文 参考訳(メタデータ) (2023-09-22T23:04:51Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Diffusion Tensor Estimation with Uncertainty Calibration [6.5085381751712506]
本研究では,拡散テンソルを推定し,推定の不確実性を計算する深層学習手法を提案する。
データ依存の不確実性はネットワークによって直接計算され、損失減衰によって学習される。
提案手法によって計算された推定の不確実性は,モデルのバイアスを強調し,領域シフトを検出し,測定における雑音の強さを反映できることを示す。
論文 参考訳(メタデータ) (2021-11-21T15:58:01Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Do Not Forget to Attend to Uncertainty while Mitigating Catastrophic
Forgetting [29.196246255389664]
ディープラーニングモデルの大きな制限の1つは、漸進的な学習シナリオにおいて、破滅的な忘れに直面していることだ。
ベイズ式を定式化して,不確実性をモデル化する。
漸進的な学習問題に対処するために、自己認識フレームワークも組み込んでいます。
論文 参考訳(メタデータ) (2021-02-03T06:54:52Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
2つの画像に関連する密度の高い流れ場と、堅牢な画素方向の信頼度マップの推定を目指しています。
フロー予測とその不確実性を共同で学習するフレキシブルな確率的アプローチを開発する。
本手法は,幾何学的マッチングと光フローデータセットに挑戦する最新の結果を得る。
論文 参考訳(メタデータ) (2021-01-05T18:54:11Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
我々は、モデル損失関数の影響関数を利用して、予測信頼区間のジャックニフェ(または、アウト・ワン・アウト)推定器を構築する頻繁な手順を開発する。
1)および(2)を満たすDJは、幅広いディープラーニングモデルに適用可能であり、実装が容易であり、モデルトレーニングに干渉したり、精度を妥協したりすることなく、ポストホックな方法で適用することができる。
論文 参考訳(メタデータ) (2020-06-29T13:36:52Z) - On the uncertainty of self-supervised monocular depth estimation [52.13311094743952]
単眼深度推定のための自己監督的パラダイムは、基礎的な真理アノテーションを全く必要としないため、非常に魅力的である。
我々は,このタスクの不確かさを推定する方法と,これが深さ精度にどのように影響するかを初めて検討する。
自己教師型アプローチに特化して設計された,斬新な手法を提案する。
論文 参考訳(メタデータ) (2020-05-13T09:00:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。