論文の概要: A Critical Synthesis of Uncertainty Quantification and Foundation Models in Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2501.08188v1
- Date: Tue, 14 Jan 2025 15:13:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:27:33.909582
- Title: A Critical Synthesis of Uncertainty Quantification and Foundation Models in Monocular Depth Estimation
- Title(参考訳): 単分子深度推定における不確かさ量子化と基礎モデルの臨界合成
- Authors: Steven Landgraf, Rongjun Qin, Markus Ulrich,
- Abstract要約: 絶対距離の予測を伴う計量深度推定は、特定の課題を提起する。
我々は、現在最先端のDepthAnythingV2基盤モデルを用いて、5つの異なる不確実性定量化手法を融合する。
ガウス陰性対数損失(GNLL)による微調整は特に有望なアプローチである。
- 参考スコア(独自算出の注目度): 13.062551984263031
- License:
- Abstract: While recent foundation models have enabled significant breakthroughs in monocular depth estimation, a clear path towards safe and reliable deployment in the real-world remains elusive. Metric depth estimation, which involves predicting absolute distances, poses particular challenges, as even the most advanced foundation models remain prone to critical errors. Since quantifying the uncertainty has emerged as a promising endeavor to address these limitations and enable trustworthy deployment, we fuse five different uncertainty quantification methods with the current state-of-the-art DepthAnythingV2 foundation model. To cover a wide range of metric depth domains, we evaluate their performance on four diverse datasets. Our findings identify fine-tuning with the Gaussian Negative Log-Likelihood Loss (GNLL) as a particularly promising approach, offering reliable uncertainty estimates while maintaining predictive performance and computational efficiency on par with the baseline, encompassing both training and inference time. By fusing uncertainty quantification and foundation models within the context of monocular depth estimation, this paper lays a critical foundation for future research aimed at improving not only model performance but also its explainability. Extending this critical synthesis of uncertainty quantification and foundation models into other crucial tasks, such as semantic segmentation and pose estimation, presents exciting opportunities for safer and more reliable machine vision systems.
- Abstract(参考訳): 最近の基礎モデルは、単分子深度推定において大きなブレークスルーを可能にしているが、現実の世界における安全で信頼性の高い展開への明確な道のりは、いまだ解明されていない。
絶対距離の予測を伴う計量深度推定は、最も先進的な基礎モデルでさえ重大なエラーを起こしやすいため、特別な課題を提起する。
これらの制限に対処し、信頼性の高い展開を可能にするための有望な取り組みとして不確実性の定量化が現れたので、我々は5つの異なる不確実性定量化手法を現在の最先端DepthAnythingV2基盤モデルと融合する。
広い範囲の計量深度領域をカバーするため、4つの多様なデータセットでそれらの性能を評価する。
本研究は,ガウス陰性対数損失(GNLL)による微調整を特に有望なアプローチとし,予測性能と計算効率をベースラインと同等に維持し,トレーニング時間と推論時間の両方を包含しながら,信頼性の高い不確実性推定を行う。
単分子深度推定の文脈において不確かさの定量化と基礎モデルを融合させることにより,本論文はモデル性能だけでなく,その説明可能性も向上することを目的とした今後の研究の基盤となる。
不確実性定量化と基礎モデルのこの重要な合成を意味的セグメンテーションやポーズ推定といった他の重要なタスクに拡張することで、より安全で信頼性の高いマシンビジョンシステムのためのエキサイティングな機会を提供する。
関連論文リスト
- A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation [0.0]
画像セグメンテーションの進歩は、ディープラーニングベースのコンピュータビジョンの幅広い範囲において重要な役割を担っている。
この文脈において不確かさの定量化が広く研究され、モデル無知(エピステミック不確実性)やデータあいまいさ(アラート不確実性)を表現し、不正な意思決定を防ぐことができる。
論文 参考訳(メタデータ) (2024-11-25T13:26:09Z) - Rethinking the Uncertainty: A Critical Review and Analysis in the Era of Large Language Models [42.563558441750224]
大規模言語モデル(LLM)は、幅広い人工知能応用の基礎となっている。
現在の手法はしばしば、真の不確実性を特定し、測定し、対処するのに苦労する。
本稿では,不確実性の種類や原因を特定し,理解するための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:07:15Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
本稿では,効率的かつ高精度な不確実性定量化を深層学習に基づく代理モデルに統合する手法を提案する。
本手法は,フォワード問題と逆問題の両方に対して,堅牢かつ効率的な不確実性定量化機能を備えたディープラーニングに基づく代理モデルを提案する。
提案手法は, 長期予測を含むシナリオに適合し, 拡張された自己回帰ロールアウトに対する不確かさの伝播に優れる。
論文 参考訳(メタデータ) (2024-02-13T11:22:59Z) - MonoProb: Self-Supervised Monocular Depth Estimation with Interpretable
Uncertainty [4.260312058817663]
自己監督型単眼深度推定法は, 環境分析における自律走行車などの重要な応用に利用されることを目的としている。
解釈不能な不確実性を返す新しい教師なし単分子深度推定法であるMonoProbを提案する。
実験では,標準深度と不確実性の測定値について,本手法により達成された改善点を強調した。
論文 参考訳(メタデータ) (2023-11-10T15:55:14Z) - The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation [97.63185634482552]
我々は,RoboDepth Challengeの優勝ソリューションを要約する。
この課題は、堅牢なOoD深度推定を容易にし、前進させるように設計された。
この課題が、堅牢で信頼性の高い深度推定に関する将来の研究の基盤となることを願っている。
論文 参考訳(メタデータ) (2023-07-27T17:59:56Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
我々は、複数のモデルを含む人間のポーズ予測のためのオープンソースのライブラリを開発し、複数のデータセットをサポートする。
我々は、パフォーマンスを高め、より良い信頼をもたらすために、問題の2つの不確実性を考案する。
論文 参考訳(メタデータ) (2023-04-13T17:56:08Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Uncertainty Estimation with Deep Learning for Rainfall-Runoff Modelling [4.080450230687111]
不確実性推定は水文予測に不可欠である。
深層学習では正確で正確で確実な不確実性推定が可能であることを示す。
論文 参考訳(メタデータ) (2020-12-15T20:52:19Z) - On the uncertainty of self-supervised monocular depth estimation [52.13311094743952]
単眼深度推定のための自己監督的パラダイムは、基礎的な真理アノテーションを全く必要としないため、非常に魅力的である。
我々は,このタスクの不確かさを推定する方法と,これが深さ精度にどのように影響するかを初めて検討する。
自己教師型アプローチに特化して設計された,斬新な手法を提案する。
論文 参考訳(メタデータ) (2020-05-13T09:00:55Z) - Model Uncertainty Quantification for Reliable Deep Vision Structural
Health Monitoring [2.5126058470073263]
本稿では,深部視覚構造型健康モニタリングモデルに対するベイズ推定を提案する。
不確かさはモンテカルロのドロップアウトサンプリングを用いて定量化することができる。
き裂, 局部損傷同定, 橋梁部品検出の3つの独立したケーススタディについて検討した。
論文 参考訳(メタデータ) (2020-04-10T17:54:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。