論文の概要: Deep Modeling of Non-Gaussian Aleatoric Uncertainty
- arxiv url: http://arxiv.org/abs/2405.20513v1
- Date: Thu, 30 May 2024 22:13:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 16:05:36.915681
- Title: Deep Modeling of Non-Gaussian Aleatoric Uncertainty
- Title(参考訳): 非ガウスアレタリック不確かさの深部モデリング
- Authors: Aastha Acharya, Caleb Lee, Marissa D'Alonzo, Jared Shamwell, Nisar R. Ahmed, Rebecca Russell,
- Abstract要約: ディープラーニングは、ロボット推定システムにおけるアレタリック不確実性を正確にモデル化する、有望な新しい方法を提供する。
本研究では,条件付き確率密度モデリングのための3つの基礎的深層学習手法を定式化し,評価する。
以上の結果から,これらの深層学習手法は複雑な不確実性パターンを正確に把握し,評価システムの信頼性と堅牢性を向上させる可能性を強調した。
- 参考スコア(独自算出の注目度): 4.969887562291159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning offers promising new ways to accurately model aleatoric uncertainty in robotic estimation systems, particularly when the uncertainty distributions do not conform to traditional assumptions of being fixed and Gaussian. In this study, we formulate and evaluate three fundamental deep learning approaches for conditional probability density modeling to quantify non-Gaussian aleatoric uncertainty: parametric, discretized, and generative modeling. We systematically compare the respective strengths and weaknesses of these three methods on simulated non-Gaussian densities as well as on real-world terrain-relative navigation data. Our results show that these deep learning methods can accurately capture complex uncertainty patterns, highlighting their potential for improving the reliability and robustness of estimation systems.
- Abstract(参考訳): ディープラーニングは、ロボット推定システムにおけるアレタリック不確実性を正確にモデル化するための、有望な新しい方法を提供する。
本研究では, パラメトリック, 離散化, 生成モデリングの3つの基礎的深層学習手法を, 条件付き確率密度モデリングで定式化し評価する。
我々は,これらの3つの手法の強みと弱みを実世界の地形関連航法データだけでなく,非ガウス密度をシミュレートする上で体系的に比較した。
以上の結果から,これらの深層学習手法は複雑な不確実性パターンを正確に把握し,評価システムの信頼性と堅牢性を向上させる可能性を強調した。
関連論文リスト
- One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
for Earth System Science Applications [0.32302664881848275]
エビデンシャル・ディープ・ラーニング(Evidential Deep Learning)は、パラメトリック・ディープ・ラーニングを高次分布に拡張する手法である。
本研究では,明らかなニューラルネットワークから得られる不確実性とアンサンブルから得られる不確実性を比較する。
本研究では,従来の手法に匹敵する予測精度を実現するとともに,両方の不確実性源をしっかりと定量化しながら,明らかな深層学習モデルを示す。
論文 参考訳(メタデータ) (2023-09-22T23:04:51Z) - Deep Evidential Learning for Bayesian Quantile Regression [3.6294895527930504]
1つの決定論的フォワードパスモデルから正確な不確実性を推定することが望ましい。
本稿では,ガウス的仮定を使わずに連続目標分布の量子化を推定できるディープベイズ量子回帰モデルを提案する。
論文 参考訳(メタデータ) (2023-08-21T11:42:16Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - On Uncertainty Calibration and Selective Generation in Probabilistic
Neural Summarization: A Benchmark Study [14.041071717005362]
要約のための最新のディープモデルは、優れたベンチマーク性能を得るが、誤校正された予測の不確実性を生成する傾向にある。
これは、低品質の予測に高い信頼性を割り当て、現実世界のアプリケーションにおける信頼性と信頼性を損なうことを意味する。
確率的深層学習法は誤校正問題の一般的な解法であるが, 複雑な自己回帰的要約タスクにおける相対的有効性はよく理解されていない。
論文 参考訳(メタデータ) (2023-04-17T23:06:28Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
本稿では,ニューラル状態空間モデルを用いたシステム同定のための不確実性定量化に関する予備的結果を示す。
ベイズ確率的設定で学習問題をフレーム化し、ニューラルネットワークの重みと出力の後方分布を求める。
後部に基づいて,出力の信頼区間を構築し,潜在的に危険なアウト・オブ・ディストリビューション体制下でモデルの使用を効果的に診断できるサプライズ指標を定義する。
論文 参考訳(メタデータ) (2023-04-13T08:57:33Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Calibration and Uncertainty Quantification of Bayesian Convolutional
Neural Networks for Geophysical Applications [0.0]
このような地下モデルによる予測の不確実性は、キャリブレーションされた確率と関連する不確かさを予測に組み込むのが一般的である。
一般的なディープラーニングベースのモデルは、しばしば誤解され、決定論的性質のため、予測の不確実性を解釈する手段がないことが示されている。
ベイズ形式論における畳み込みニューラルネットワークに基づく確率モデルを得るための3つの異なるアプローチを比較した。
論文 参考訳(メタデータ) (2021-05-25T17:54:23Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。