Review on Quantum Walk Computing: Theory, Implementation, and Application
- URL: http://arxiv.org/abs/2404.04178v1
- Date: Fri, 5 Apr 2024 15:45:35 GMT
- Title: Review on Quantum Walk Computing: Theory, Implementation, and Application
- Authors: Xiaogang Qiang, Shixin Ma, Haijing Song,
- Abstract summary: The quantum walk is proposed as an important theoretical model for quantum computing.
Quantum walks and their variety have been extensively studied for achieving beyond classical computing power.
Recent progress has been achieved in implementing a wide variety of quantum walks and quantum walk applications.
- Score: 0.30723404270319693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical random walk formalism shows a significant role across a wide range of applications. As its quantum counterpart, the quantum walk is proposed as an important theoretical model for quantum computing. By exploiting the quantum effects such as superposition, interference and entanglement, quantum walks and their variety have been extensively studied for achieving beyond classical computing power, and they have been broadly used in designing quantum algorithms in fields ranging from algebraic and optimization problems, graph and network analysis, to quantum Hamiltonian and biochemical process simulations, and even further quantum walk models have proven their capabilities for universal quantum computation. Compared to the conventional quantum circuit models, quantum walks show a feasible path for implementing application-specific quantum computing in particularly the noisy intermediate-scale quantum era. Recently remarkable progress has been achieved in implementing a wide variety of quantum walks and quantum walk applications, demonstrating the great potential of quantum walks. In this review, we provide a thorough summary of quantum walks and quantum walk computing, including aspects of quantum walk theories and characteristics, advances in their physical implementations and the flourishingly developed quantum walk computing applications. We also discuss the challenges facing quantum walk computing, toward realizing a practical quantum computer in the near future.
Related papers
- Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum information processing with superconducting circuits: a
perspective [0.0]
Key issues involve how to achieve quantum advantage in useful applications for quantum optimization and materials science.
Recent work on applications of variational quantum algorithms for optimization and electronic structure determination.
Current work and ideas about how to scale up to competitive quantum systems.
arXiv Detail & Related papers (2023-02-09T10:49:56Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Qsun: an open-source platform towards practical quantum machine learning
applications [0.0]
This paper introduces our quantum virtual machine named Qsun, whose operation is underlined by quantum state wave-functions.
We then report two tests representative of quantum machine learning: quantum linear regression and quantum neural network.
arXiv Detail & Related papers (2021-07-22T09:37:31Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.