Radio frequency reflectometry in silicon-based quantum dots
- URL: http://arxiv.org/abs/2012.14560v2
- Date: Thu, 7 Jan 2021 01:45:51 GMT
- Title: Radio frequency reflectometry in silicon-based quantum dots
- Authors: Y.-Y. Liu, S. G. J. Philips, L. A. Orona, N. Samkharadze, T. McJunkin,
E. R. MacQuarrie, M. A. Eriksson, L. M. K. Vandersypen, A. Yacoby
- Abstract summary: We focus on the implementation of RF readout in accumulation-mode gate-defined quantum dots.
We demonstrate that these methods enable high-performance charge readout in Si/SiGe quantum dots, achieving a fidelity of 99.9% for a measurement time of 1 $mu$s.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: RF reflectometry offers a fast and sensitive method for charge sensing and
spin readout in gated quantum dots. We focus in this work on the implementation
of RF readout in accumulation-mode gate-defined quantum dots, where the large
parasitic capacitance poses a challenge. We describe and test two methods for
mitigating the effect of the parasitic capacitance, one by on-chip
modifications and a second by off-chip changes. We demonstrate that these
methods enable high-performance charge readout in Si/SiGe quantum dots,
achieving a fidelity of 99.9% for a measurement time of 1 $\mu$s.
Related papers
- Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Cavity-enhanced single-shot readout of a quantum dot spin within 3
nanoseconds [0.45507178426690204]
We demonstrate single-shot readout of a semiconductor quantum dot spin state.
In our approach, semiconductor quantum dots are embedded in an open microcavity.
We achieve single-shot readout of an electron spin state in 3 nanoseconds with a fidelity of (95.2$pm$0.7)%.
arXiv Detail & Related papers (2022-10-25T09:45:49Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Fast high-fidelity single-shot readout of spins in silicon using a
single-electron box [0.5455889233228607]
We present two demonstrations of fast high-fidelity single-shot readout of spins in silicon quantum dots using a compact, dispersive charge sensor.
The sensor, despite requiring fewer electrodes than conventional detectors, performs at the state-of-the-art achieving spin read-out fidelity of 99.2% in less than 6 $mu$s.
arXiv Detail & Related papers (2022-03-13T09:38:31Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Enhanced Electro-Optic Sampling with Quantum Probes [0.0]
Photon-number entangled twin beams are used to derive conditioned non-classical probes.
In the case of the quantum vacuum, this leads to a six-fold improvement in the signal-to-noise ratio.
arXiv Detail & Related papers (2021-06-08T14:25:24Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Large-Range Frequency Tuning of a Narrow-Linewidth Quantum Emitter [0.0]
A hybrid system of a semiconductor quantum dot single photon source and a rubidium quantum memory represents a promising architecture for future photonic quantum repeaters.
Here, we demonstrate the bidirectional frequency-tuning of the emission from a narrow-linewidth (close-to-transform-limited) quantum dot.
The induced strain shifts the emission frequency of the quantum dot over a total range of $1.15 textTHz$, about three orders of magnitude larger than its linewidth.
arXiv Detail & Related papers (2020-08-26T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.