論文の概要: Advances in deep learning methods for pavement surface crack detection
and identification with visible light visual images
- arxiv url: http://arxiv.org/abs/2012.14704v1
- Date: Tue, 29 Dec 2020 11:10:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-18 20:30:48.446876
- Title: Advances in deep learning methods for pavement surface crack detection
and identification with visible light visual images
- Title(参考訳): 可視光画像を用いた舗装面き裂検出・識別のための深層学習手法の進歩
- Authors: Kailiang Lu
- Abstract要約: 工学構造における亀裂のNDTおよび健康モニタリング法と比較して、可視光画像に基づく表面亀裂検出または識別は非接触である。
本稿では,舗装き裂公開データセットを包括的に要約し,組込みプラットフォームにおける表面き裂検出および識別深層学習手法の性能と有効性について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Compared to NDT and health monitoring method for cracks in engineering
structures, surface crack detection or identification based on visible light
images is non-contact, with the advantages of fast speed, low cost and high
precision. Firstly, typical pavement (concrete also) crack public data sets
were collected, and the characteristics of sample images as well as the random
variable factors, including environmental, noise and interference etc., were
summarized. Subsequently, the advantages and disadvantages of three main crack
identification methods (i.e., hand-crafted feature engineering, machine
learning, deep learning) were compared. Finally, from the aspects of model
architecture, testing performance and predicting effectiveness, the development
and progress of typical deep learning models, including self-built CNN,
transfer learning(TL) and encoder-decoder(ED), which can be easily deployed on
embedded platform, were reviewed. The benchmark test shows that: 1) It has been
able to realize real-time pixel-level crack identification on embedded
platform: the entire crack detection average time cost of an image sample is
less than 100ms, either using the ED method (i.e., FPCNet) or the TL method
based on InceptionV3. It can be reduced to less than 10ms with TL method based
on MobileNet (a lightweight backbone base network). 2) In terms of accuracy, it
can reach over 99.8% on CCIC which is easily identified by human eyes. On
SDNET2018, some samples of which are difficult to be identified, FPCNet can
reach 97.5%, while TL method is close to 96.1%.
To the best of our knowledge, this paper for the first time comprehensively
summarizes the pavement crack public data sets, and the performance and
effectiveness of surface crack detection and identification deep learning
methods for embedded platform, are reviewed and evaluated.
- Abstract(参考訳): 工学構造におけるひび割れのNDTおよび健康モニタリング法と比較して, 目視光画像に基づく表面き裂検出や識別は非接触であり, 高速, 低コスト, 高精度の利点がある。
まず, 典型的な舗装(コンクリートも含む)のひび割れ公共データセットを収集し, 環境, 騒音, 干渉等を含むランダムな変動要因とともに, サンプル画像の特性を要約した。
その後, 3つの主要なき裂識別手法(手作り特徴工学, 機械学習, ディープラーニング)の利点と欠点を比較した。
最後に、モデルアーキテクチャ、性能テスト、予測の有効性の観点から、組み込みプラットフォームに容易にデプロイ可能な自己構築型CNN、転送学習(TL)、エンコーダデコーダ(ED)など、典型的なディープラーニングモデルの開発と進歩について概説した。
1) 画像サンプルのひび割れ検出平均時間コストは100ms未満であり、ED法(FPCNet)またはInceptionV3に基づくTL法のいずれかを用いている。
tl メソッドは mobilenet (軽量バックボーンベースネットワーク) をベースとした tl メソッドで 10ms 未満に削減できる。
2) 精度の面では, ヒトの眼で容易に識別できるccicでは99.8%以上に達する。
SDNET2018では、いくつかのサンプルは特定が難しいが、FPCNetは97.5%、TL法は96.1%である。
本研究は,本研究で初めて,舗装ひび割れの公共データセットを包括的に要約し,組込みプラットフォームにおける表面き裂検出と深層学習手法の性能と有効性についてレビュー・評価した。
関連論文リスト
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - SAM-based instance segmentation models for the automation of structural
damage detection [0.0]
M1300と命名された1,300の注釈付き画像(640ピクセル×640ピクセル)で、レンガ、壊れたレンガ、ひび割れをカバーしている。
我々は、最新の大規模モデル、プロンプトベースのSegment Anything Model(SAM)など、ベンチマークのためのいくつかの主要なアルゴリズムをテストする。
本稿では,SAM実行を自動化する2つの新しい手法を提案する。第1の方法はプロンプトエンコーダを捨て,SAMエンコーダを他のデコーダに接続することであり,第2の方法は学習可能な自己生成プロンプトを導入する。
論文 参考訳(メタデータ) (2024-01-27T02:00:07Z) - Concrete Surface Crack Detection with Convolutional-based Deep Learning
Models [0.0]
き裂検出は、建物の構造的健康モニタリングと検査に重要である。
畳み込みニューラルネットワーク(CNN)は、ひび割れ検出のための有望なフレームワークとして登場した。
我々は、事前訓練されたディープラーニングアーキテクチャに微調整技術を採用する。
論文 参考訳(メタデータ) (2024-01-13T17:31:12Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
我々は,エンコーダ・デコーダ構造上の表面欠陥を簡易に検出するためのGCANet(Global Context Aggregation Network)を開発した。
まず、軽量バックボーンの上部層に新しいトランスフォーマーエンコーダを導入し、DSA(Depth-wise Self-Attention)モジュールを通じてグローバルなコンテキスト情報をキャプチャする。
3つの公開欠陥データセットの実験結果から,提案したネットワークは,他の17の最先端手法と比較して,精度と実行効率のトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2023-09-22T06:19:11Z) - Dual flow fusion model for concrete surface crack segmentation [0.0]
亀裂やその他の損傷は交通インフラの安全運用に重大な脅威をもたらす。
ディープラーニングモデルは、実用的な視覚的セグメンテーションタスクに広く応用されている。
本稿では,二重ストリームの融合に基づくひび割れ分割モデルを提案する。
論文 参考訳(メタデータ) (2023-05-09T02:35:58Z) - Evaluation and Comparison of Deep Learning Methods for Pavement Crack
Identification with Visual Images [0.0]
ディープラーニングアルゴリズムによる視覚画像による舗装き裂の識別は、検出対象の材料によって制限されないという利点がある。
パッチサンプル分類の面では、細調整されたTLモデルはEDモデルと精度で同等またはわずかに良い。
正確なクラック位置の面では、EDアルゴリズムとGANアルゴリズムの両方がピクセルレベルのセグメンテーションを達成でき、低演算パワープラットフォーム上でリアルタイムに検出されることが期待できる。
論文 参考訳(メタデータ) (2021-12-20T08:23:43Z) - PointCrack3D: Crack Detection in Unstructured Environments using a
3D-Point-Cloud-Based Deep Neural Network [20.330700719146215]
本稿では,非構造面に対する新しい3Dポイント・クラウド・ベースのき裂検出アルゴリズムであるPointCrack3Dを提案する。
この手法は、新しい大きな天然岩のデータセットで実験的に検証された。
その結果, ひび割れ検出率は全体の97%, ひび割れの100%であり, 最大幅は3cm以上であった。
論文 参考訳(メタデータ) (2021-11-23T02:33:18Z) - Active Learning of Neural Collision Handler for Complex 3D Mesh
Deformations [68.0524382279567]
3次元変形メッシュにおける衝突の検出と処理を行う頑健な学習アルゴリズムを提案する。
提案手法は教師あり学習法より優れ, 精度は93.8-98.1%である。
論文 参考訳(メタデータ) (2021-10-08T04:08:31Z) - Sample and Computation Redistribution for Efficient Face Detection [137.19388513633484]
トレーニングデータサンプリングと計算分布戦略は、効率的で正確な顔検出の鍵です。
scrfdf34は、最高の競合製品であるTinaFaceを3.86%(ハードセットでのAP)で上回り、GPU上でVGA解像度画像でmph3$times$より高速です。
論文 参考訳(メタデータ) (2021-05-10T23:51:14Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。