A Review of Machine Learning Techniques for Applied Eye Fundus and
Tongue Digital Image Processing with Diabetes Management System
- URL: http://arxiv.org/abs/2012.15025v1
- Date: Wed, 30 Dec 2020 03:49:37 GMT
- Title: A Review of Machine Learning Techniques for Applied Eye Fundus and
Tongue Digital Image Processing with Diabetes Management System
- Authors: Wei Xiang Lim, Zhiyuan Chen, Amr Ahmed, Tissa Chandesa and Iman Liao
- Abstract summary: Diabetes is a global epidemic and it is increasing at an alarming rate.
The International Diabetes Federation projected that the total number of people with diabetes globally may increase by 48%.
This paper addresses the background of diabetes and its complications.
- Score: 7.209705108900718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetes is a global epidemic and it is increasing at an alarming rate. The
International Diabetes Federation (IDF) projected that the total number of
people with diabetes globally may increase by 48%, from 425 million (year 2017)
to 629 million (year 2045). Moreover, diabetes had caused millions of deaths
and the number is increasing drastically. Therefore, this paper addresses the
background of diabetes and its complications. In addition, this paper
investigates innovative applications and past researches in the areas of
diabetes management system with applied eye fundus and tongue digital images.
Different types of existing applied eye fundus and tongue digital image
processing with diabetes management systems in the market and state-of-the-art
machine learning techniques from previous literature have been reviewed. The
implication of this paper is to have an overview in diabetic research and what
new machine learning techniques can be proposed in solving this global
epidemic.
Related papers
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Diabetes detection using deep learning techniques with oversampling and
feature augmentation [0.3749861135832073]
Diabetes is a chronic pathology which is affecting more and more people over the years.
It gives rise to a large number of deaths each year.
Many people living with the disease do not realize the seriousness of their health status early enough.
arXiv Detail & Related papers (2024-02-03T15:30:20Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - HealthEdge: A Machine Learning-Based Smart Healthcare Framework for
Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing
System [0.0]
The alarming increase in diabetes calls for the need to take precautionary measures to avoid/predict the occurrence of diabetes.
This paper proposes HealthEdge, a machine learning-based smart healthcare framework for type 2 diabetes prediction in an integrated IoT-edge-cloud computing system.
arXiv Detail & Related papers (2023-01-25T07:57:18Z) - Task-wise Split Gradient Boosting Trees for Multi-center Diabetes
Prediction [37.846368153741395]
Task-wise Split Gradient Boosting Trees (TSGB) is proposed for the multi-center diabetes prediction task.
TSGB achieves superior performance against several state-of-the-art methods.
The proposed TSGB method has been deployed as an online diabetes risk assessment software for early diagnosis.
arXiv Detail & Related papers (2021-08-16T14:22:44Z) - Hybrid stacked ensemble combined with genetic algorithms for Prediction
of Diabetes [0.0]
Diabetes is one of the most common, dangerous, and costly diseases in the world.
In this study, we use the experimental data, real data on Indian diabetics on the University of California website.
Results show the high performance of the proposed method in diagnosing the disease, which has reached 98.8%, and 99% accuracy in this study.
arXiv Detail & Related papers (2021-03-15T07:47:23Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Variable Weights Neural Network For Diabetes Classification [0.0]
We have designed a liquid machine learning approach to detect Diabetes with no cost using deep learning.
Our approach shows a significant improvement in the previous state-of-the-art results.
arXiv Detail & Related papers (2021-02-22T11:08:25Z) - The Diabetic Buddy: A Diet Regulator andTracking System for Diabetics [3.7026481341955053]
The prevalence of diabetes in the Middle East is 17-20%, which is well above the global average of 8-9%.
This paper presents an automatic way of tracking continuous glucose and food intake of diabetics using off-the-shelf sensors and machine learning.
arXiv Detail & Related papers (2021-01-08T20:03:58Z) - Adversarial Exposure Attack on Diabetic Retinopathy Imagery Grading [75.73437831338907]
Diabetic Retinopathy (DR) is a leading cause of vision loss around the world.
To help diagnose it, numerous cutting-edge works have built powerful deep neural networks (DNNs) to automatically grade DR via retinal fundus images (RFIs)
RFIs are commonly affected by camera exposure issues that may lead to incorrect grades.
In this paper, we study this problem from the viewpoint of adversarial attacks.
arXiv Detail & Related papers (2020-09-19T13:47:33Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.