Diabetes detection using deep learning techniques with oversampling and
feature augmentation
- URL: http://arxiv.org/abs/2402.02188v1
- Date: Sat, 3 Feb 2024 15:30:20 GMT
- Title: Diabetes detection using deep learning techniques with oversampling and
feature augmentation
- Authors: Mar\'ia Teresa Garc\'ia-Ord\'as, Carmen Benavides, Jos\'e Alberto
Ben\'itez-Andrades, H\'ector Alaiz-Moret\'on and Isa\'ias
Garc\'ia-Rodr\'iguez
- Abstract summary: Diabetes is a chronic pathology which is affecting more and more people over the years.
It gives rise to a large number of deaths each year.
Many people living with the disease do not realize the seriousness of their health status early enough.
- Score: 0.3749861135832073
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background and objective: Diabetes is a chronic pathology which is affecting
more and more people over the years. It gives rise to a large number of deaths
each year. Furthermore, many people living with the disease do not realize the
seriousness of their health status early enough. Late diagnosis brings about
numerous health problems and a large number of deaths each year so the
development of methods for the early diagnosis of this pathology is essential.
Methods: In this paper, a pipeline based on deep learning techniques is
proposed to predict diabetic people. It includes data augmentation using a
variational autoencoder (VAE), feature augmentation using an sparse autoencoder
(SAE) and a convolutional neural network for classification. Pima Indians
Diabetes Database, which takes into account information on the patients such as
the number of pregnancies, glucose or insulin level, blood pressure or age, has
been evaluated.
Results: A 92.31% of accuracy was obtained when CNN classifier is trained
jointly the SAE for featuring augmentation over a well balanced dataset. This
means an increment of 3.17% of accuracy with respect the state-of-the-art.
Conclusions: Using a full deep learning pipeline for data preprocessing and
classification has demonstrate to be very promising in the diabetes detection
field outperforming the state-of-the-art proposals.
Related papers
- A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - DiabetesNet: A Deep Learning Approach to Diabetes Diagnosis [6.095029229301643]
Experimental results on three datasets show significant improvements in overall accuracy, sensitivity, and specificity compared to traditional methods.
This underscores the potential of deep learning models for robust diabetes diagnosis.
arXiv Detail & Related papers (2024-03-12T10:18:59Z) - Machine Learning-Based Diabetes Detection Using Photoplethysmography
Signal Features [0.0]
Diabetes is a prevalent chronic condition that compromises the health of millions of people worldwide.
Here, we present an alternative method to overcome shortcomings based on non-invasive optical photoplethysmography for detecting diabetes.
We classify non-Diabetic and Diabetic patients using the PPG signal and algorithms for training Logistic Regression and eXtreme Gradient Boosting.
Our findings are within the same range reported in the literature, indicating that machine learning methods are promising for developing remote, non-invasive, and continuous measurement devices for detecting and preventing diabetes.
arXiv Detail & Related papers (2023-08-02T14:10:03Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Early Stage Diabetes Prediction via Extreme Learning Machine [0.0]
Forty-six percent of people with diabetes have not been diagnosed.
Diabetes can develop several other severe diseases that can lead to patient death.
This paper proposed a novel approach based on an extreme learning machine for diabetes prediction based on a data questionnaire.
arXiv Detail & Related papers (2022-02-22T22:23:59Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Hybrid stacked ensemble combined with genetic algorithms for Prediction
of Diabetes [0.0]
Diabetes is one of the most common, dangerous, and costly diseases in the world.
In this study, we use the experimental data, real data on Indian diabetics on the University of California website.
Results show the high performance of the proposed method in diagnosing the disease, which has reached 98.8%, and 99% accuracy in this study.
arXiv Detail & Related papers (2021-03-15T07:47:23Z) - Variable Weights Neural Network For Diabetes Classification [0.0]
We have designed a liquid machine learning approach to detect Diabetes with no cost using deep learning.
Our approach shows a significant improvement in the previous state-of-the-art results.
arXiv Detail & Related papers (2021-02-22T11:08:25Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1-D convolutional neural network models are trained for classification of short-range sequences.
Model provides prediction with high average accuracy on a hold out test set.
arXiv Detail & Related papers (2020-02-06T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.