論文の概要: Damaged Fingerprint Recognition by Convolutional Long Short-Term Memory
Networks for Forensic Purposes
- arxiv url: http://arxiv.org/abs/2012.15041v1
- Date: Wed, 30 Dec 2020 04:51:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-18 05:57:03.846182
- Title: Damaged Fingerprint Recognition by Convolutional Long Short-Term Memory
Networks for Forensic Purposes
- Title(参考訳): 法医学的目的のための畳み込み長短期記憶ネットワークによる損傷指紋認識
- Authors: Jaouhar Fattahi and Mohamed Mejri
- Abstract要約: 本稿では,Convolutional Long Short-Term Memory Networkによる損傷指紋の認識に着目した。
我々は,このモデルのアーキテクチャを示し,95%の精度,99%の精度,95%のリコール,99%のaucに接近する性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fingerprint recognition is often a game-changing step in establishing
evidence against criminals. However, we are increasingly finding that criminals
deliberately alter their fingerprints in a variety of ways to make it difficult
for technicians and automatic sensors to recognize their fingerprints, making
it tedious for investigators to establish strong evidence against them in a
forensic procedure. In this sense, deep learning comes out as a prime candidate
to assist in the recognition of damaged fingerprints. In particular,
convolution algorithms. In this paper, we focus on the recognition of damaged
fingerprints by Convolutional Long Short-Term Memory networks. We present the
architecture of our model and demonstrate its performance which exceeds 95%
accuracy, 99% precision, and approaches 95% recall and 99% AUC.
- Abstract(参考訳): 指紋認識は、しばしば犯罪者に対する証拠を確立するためのゲームを変えるステップである。
しかし、犯罪者が故意に指紋を改ざんして、技術者や自動センサーが指紋を認識するのを難しくし、捜査官が法医学的な手続きで彼らに対して強力な証拠を確立するのが面倒になることが、ますますわかってきています。
この意味で、ディープラーニングは、損傷した指紋の認識を支援する主要候補として現れる。
特に畳み込みアルゴリズムです
本稿では,Convolutional Long Short-Term Memory Networkによる損傷指紋の認識に着目した。
我々は,このモデルのアーキテクチャを示し,95%の精度,99%の精度,95%のリコール,99%のaucに接近する性能を示す。
関連論文リスト
- Latent fingerprint enhancement for accurate minutiae detection [8.996826918574463]
本稿では,GAN(Generative Adversary Network)を用いてLFE(Latent Fingerprint Enhancement)を再定義する手法を提案する。
生成過程の微妙な情報を直接最適化することにより、このモデルは、地味な事例に対して例外的な忠実さを示す強化された潜伏指紋を生成する。
筆者らのフレームワークは, 微小な位置と配向場を統合し, 局所的および構造的指紋の特徴の保存を確実にする。
論文 参考訳(メタデータ) (2024-09-18T08:35:31Z) - Deep Learning-Based Approaches for Contactless Fingerprints Segmentation
and Extraction [1.2441902898414798]
我々は,非接触指紋の局所化とセグメンテーションのためのディープラーニングベースのセグメンテーションツールを開発した。
評価では,30ピクセルの平均絶対誤差(MAE),5.92度の角度予測誤差(EAP),97.46%のラベル付け精度を示した。
論文 参考訳(メタデータ) (2023-11-26T01:56:10Z) - A Universal Latent Fingerprint Enhancer Using Transformers [47.87570819350573]
本研究の目的は,ULPrintと呼ばれる高速なフィンガープリント方式を開発し,様々な潜伏指紋のタイプを増強することである。
クローズドセットの識別精度実験では、MSU-AFISの性能は61.56%から75.19%に向上した。
論文 参考訳(メタデータ) (2023-05-31T23:01:11Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
ソーシャルメディアからの指紋漏洩は 画像を匿名化したいという強い欲求を喚起します
指紋漏洩を保護するために、画像に知覚不能な摂動を加えることにより、敵攻撃が解決策として現れる。
この問題を解決するために,階層型パーセプティカルノイズ注入フレームワークであるFingerSafeを提案する。
論文 参考訳(メタデータ) (2022-08-23T02:20:46Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
中規模の偽指紋データベースを記述し、2つの異なる指紋認証システムを評価する。
光およびサーマルスイーピングセンサの結果が提供される。
論文 参考訳(メタデータ) (2022-07-11T12:22:52Z) - A Fingerprint Detection Method by Fingerprint Ridge Orientation Check [0.0]
指紋認識技術は長い間研究されてきたが、その認識率は近年高い水準まで上昇している。
本稿では,指紋認識システムにおける指紋検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T05:19:41Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
深層生成モデルは質的に新しいパフォーマンスレベルを達成した。
この技術がスプーフセンサーに誤用され、ディープフェイクを発生させ、大規模な誤情報を可能にするという懸念がある。
最先端のジェネレーションモデルを責任を持って公開することで、研究者や企業がモデルに指紋を刻むことができます。
論文 参考訳(メタデータ) (2020-12-16T03:51:54Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z) - Single architecture and multiple task deep neural network for altered
fingerprint analysis [0.0]
「変質指紋」とは、摩擦隆起パターンの意図的な損傷を指す。
本稿では,変化指紋の検出,変化の種類の同定,性別,手,指の認識を行う手法を提案する。
提案手法は, 偽造, 変化, 性別, 手指の分類において, 98.21%, 98.46%, 92.52%, 97.53%, 92,18%の精度を達成している。
論文 参考訳(メタデータ) (2020-07-09T17:02:09Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
既存の潜伏指紋登録手法は、主にミツバチ間の対応を確立することに基づいている。
本研究では,一対の指紋間の空間的変換を推定する,最小限の潜伏指紋登録手法を提案する。
提案手法は,特に挑戦的な条件下で,最先端の登録性能を実現する。
論文 参考訳(メタデータ) (2020-05-12T15:51:59Z) - An Overview of Fingerprint-Based Authentication: Liveness Detection and
Beyond [0.0]
我々は,生きた人間がシステム上で認証しようとしていることを確実にするための技術として定義されている,身体の活力を検出する方法に焦点をあてる。
我々は、悪意ある人物が指紋認証システムを騙して偽の指を本物として受け入れようとする攻撃を防ぐのに、これらの手法がいかに効果的かを分析する。
論文 参考訳(メタデータ) (2020-01-24T20:07:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。