Test Score Algorithms for Budgeted Stochastic Utility Maximization
- URL: http://arxiv.org/abs/2012.15194v1
- Date: Wed, 30 Dec 2020 15:28:41 GMT
- Title: Test Score Algorithms for Budgeted Stochastic Utility Maximization
- Authors: Dabeen Lee, Milan Vojnovic, Se-Young Yun
- Abstract summary: We extend an existing scoring mechanism, namely the replication test scores, to incorporate heterogeneous item costs as well as item values.
Our algorithms and approximation guarantees assume that test scores are noisy estimates of certain expected values.
We show how our algorithm can be adapted to the setting where items arrive in a fashion while maintaining the same approximation guarantee.
- Score: 12.360522095604983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by recent developments in designing algorithms based on individual
item scores for solving utility maximization problems, we study the framework
of using test scores, defined as a statistic of observed individual item
performance data, for solving the budgeted stochastic utility maximization
problem. We extend an existing scoring mechanism, namely the replication test
scores, to incorporate heterogeneous item costs as well as item values. We show
that a natural greedy algorithm that selects items solely based on their
replication test scores outputs solutions within a constant factor of the
optimum for a broad class of utility functions. Our algorithms and
approximation guarantees assume that test scores are noisy estimates of certain
expected values with respect to marginal distributions of individual item
values, thus making our algorithms practical and extending previous work that
assumes noiseless estimates. Moreover, we show how our algorithm can be adapted
to the setting where items arrive in a streaming fashion while maintaining the
same approximation guarantee. We present numerical results, using synthetic
data and data sets from the Academia.StackExchange Q&A forum, which show that
our test score algorithm can achieve competitiveness, and in some cases better
performance than a benchmark algorithm that requires access to a value oracle
to evaluate function values.
Related papers
- From Variability to Stability: Advancing RecSys Benchmarking Practices [3.3331198926331784]
This paper introduces a novel benchmarking methodology to facilitate a fair and robust comparison of RecSys algorithms.
By utilizing a diverse set of $30$ open datasets, including two introduced in this work, we critically examine the influence of dataset characteristics on algorithm performance.
arXiv Detail & Related papers (2024-02-15T07:35:52Z) - Optimal Decision Tree and Adaptive Submodular Ranking with Noisy Outcomes [9.321976218862542]
In pool-based active learning, the learner is given an unlabeled data set and aims to efficiently learn the unknown hypothesis by querying the labels of the data points.
This can be formulated as the classical Optimal Decision Tree (ODT) problem: Given a set of tests, a set of hypotheses, and an outcome for each pair of test and hypothesis, our objective is to find a low-cost testing procedure (i.e., decision tree) that identifies the true hypothesis.
In this work, we study a fundamental variant of the ODT problem in which some test outcomes are noisy, even in the more general
arXiv Detail & Related papers (2023-12-23T21:47:50Z) - Budgeted Classification with Rejection: An Evolutionary Method with
Multiple Objectives [0.0]
Budgeted, sequential classifiers (BSCs) process inputs through a sequence of partial feature acquisition and evaluation steps.
This allows for an efficient evaluation of inputs that prevents unneeded feature acquisition.
We propose a problem-specific genetic algorithm to build budgeted, sequential classifiers with confidence-based reject options.
arXiv Detail & Related papers (2022-05-01T22:05:16Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Diversity Enhanced Active Learning with Strictly Proper Scoring Rules [4.81450893955064]
We study acquisition functions for active learning (AL) for text classification.
We convert the Expected Loss Reduction (ELR) method to estimate the increase in (strictly proper) scores like log probability or negative mean square error.
We show that the use of mean square error and log probability with BEMPS yields robust acquisition functions.
arXiv Detail & Related papers (2021-10-27T05:02:11Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
We study the problem of clustering a set of items from binary user feedback.
We devise an algorithm with a minimal cluster recovery error rate.
For adaptive selection, we develop an algorithm inspired by the derivation of the information-theoretical error lower bounds.
arXiv Detail & Related papers (2019-10-14T09:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.