MRI brain tumor segmentation and uncertainty estimation using 3D-UNet
architectures
- URL: http://arxiv.org/abs/2012.15294v1
- Date: Wed, 30 Dec 2020 19:28:53 GMT
- Title: MRI brain tumor segmentation and uncertainty estimation using 3D-UNet
architectures
- Authors: Laura Mora Ballestar and Veronica Vilaplana
- Abstract summary: This work studies 3D encoder-decoder architectures trained with patch-based techniques to reduce memory consumption and decrease the effect of unbalanced data.
We also introduce voxel-wise uncertainty information, both epistemic and aleatoric using test-time dropout (TTD) and data-augmentation (TTA) respectively.
The model and uncertainty estimation measurements proposed in this work have been used in the BraTS'20 Challenge for task 1 and 3 regarding tumor segmentation and uncertainty estimation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automation of brain tumor segmentation in 3D magnetic resonance images (MRIs)
is key to assess the diagnostic and treatment of the disease. In recent years,
convolutional neural networks (CNNs) have shown improved results in the task.
However, high memory consumption is still a problem in 3D-CNNs. Moreover, most
methods do not include uncertainty information, which is especially critical in
medical diagnosis. This work studies 3D encoder-decoder architectures trained
with patch-based techniques to reduce memory consumption and decrease the
effect of unbalanced data. The different trained models are then used to create
an ensemble that leverages the properties of each model, thus increasing the
performance. We also introduce voxel-wise uncertainty information, both
epistemic and aleatoric using test-time dropout (TTD) and data-augmentation
(TTA) respectively. In addition, a hybrid approach is proposed that helps
increase the accuracy of the segmentation. The model and uncertainty estimation
measurements proposed in this work have been used in the BraTS'20 Challenge for
task 1 and 3 regarding tumor segmentation and uncertainty estimation.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - Enhancing MRI-Based Classification of Alzheimer's Disease with Explainable 3D Hybrid Compact Convolutional Transformers [13.743241062824548]
Alzheimer's disease (AD) presents a formidable global health challenge.
Traditional analysis methods often struggle to discern intricate 3D patterns crucial for AD identification.
We introduce the 3D Hybrid Compact Convolutional Transformers 3D (HCCT)
arXiv Detail & Related papers (2024-03-24T14:35:06Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
We introduce an ensemble method that comprises eleven unique variations based on three core architectures.
Our findings reveal that the ensemble approach, combining different architectures, outperforms single models.
These results underline the potential of tailored deep learning techniques in precisely segmenting brain tumors.
arXiv Detail & Related papers (2023-08-14T15:34:22Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance.
We compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance.
Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE.
arXiv Detail & Related papers (2021-09-14T09:17:27Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation [17.756591105686]
This paper proposes hyperdense inception 3D UNet (HI-Net), which captures multi-scale information by stacking factorization of 3D weighted convolutional layers in the residual inception block.
Preliminary results on the BRATS 2020 testing set show that achieved by our proposed approach, the dice (DSC) scores of ET, WT, and TC are 0.79457, 0.87494, and 0.83712, respectively.
arXiv Detail & Related papers (2020-12-12T09:09:04Z) - Brain Tumor Segmentation using 3D-CNNs with Uncertainty Estimation [0.0]
This work proposes a 3D encoder-decoder architecture, based on V-Net citevnet which is trained with patching techniques to reduce memory consumption.
Uncertainty maps can provide extra information to expert neurologists, useful for detecting when the model is not confident on the provided segmentation.
arXiv Detail & Related papers (2020-09-24T10:50:12Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.