論文の概要: Explainability in Graph Neural Networks: A Taxonomic Survey
- arxiv url: http://arxiv.org/abs/2012.15445v2
- Date: Thu, 25 Mar 2021 17:30:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 17:25:00.056882
- Title: Explainability in Graph Neural Networks: A Taxonomic Survey
- Title(参考訳): グラフニューラルネットワークの説明可能性:分類学的調査
- Authors: Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji
- Abstract要約: グラフニューラルネットワーク(gnns)とその説明能力は急速に発展している。
GNNの説明可能性メソッドの統一された処理も、評価のための標準的なベンチマークとテストベッドもありません。
本研究はgnn説明可能性の統一的な方法論的処理と評価のための標準テストベッドを提供する。
- 参考スコア(独自算出の注目度): 42.95574260417341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning methods are achieving ever-increasing performance on many
artificial intelligence tasks. A major limitation of deep models is that they
are not amenable to interpretability. This limitation can be circumvented by
developing post hoc techniques to explain the predictions, giving rise to the
area of explainability. Recently, explainability of deep models on images and
texts has achieved significant progress. In the area of graph data, graph
neural networks (GNNs) and their explainability are experiencing rapid
developments. However, there is neither a unified treatment of GNN
explainability methods, nor a standard benchmark and testbed for evaluations.
In this survey, we provide a unified and taxonomic view of current GNN
explainability methods. Our unified and taxonomic treatments of this subject
shed lights on the commonalities and differences of existing methods and set
the stage for further methodological developments. To facilitate evaluations,
we generate a set of benchmark graph datasets specifically for GNN
explainability. We summarize current datasets and metrics for evaluating GNN
explainability. Altogether, this work provides a unified methodological
treatment of GNN explainability and a standardized testbed for evaluations.
- Abstract(参考訳): ディープラーニングの手法は多くの人工知能タスクでますます高いパフォーマンスを達成しています。
深層モデルの大きな制限は、それらが解釈可能でないことである。
この制限は、予測を説明するポストホック技術を開発し、説明可能性の領域を生じさせることによって回避できる。
近年,画像やテキストの深層モデルの説明可能性が大きく進歩している。
グラフデータ領域では、グラフニューラルネットワーク(GNN)とその説明可能性が急速に発展している。
しかし、GNN説明可能性手法の統一的な処理や標準ベンチマークや評価のためのテストベッドは存在しない。
本調査では,現在のGNN説明可能性手法の統一的・分類学的考察を行う。
本研究の統一的・分類学的処理は,既存の方法の共通点と相違点に光を当て,さらなる方法論的発展の舞台を整えた。
評価を容易にするため,GNN説明可能性のためのベンチマークグラフデータセットを作成した。
GNN説明可能性を評価するための現在のデータセットとメトリクスを要約する。
この研究は、GNN説明可能性の統一的な方法論的処理と、評価のための標準化されたテストベッドを提供する。
関連論文リスト
- Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - A Survey on Explainability of Graph Neural Networks [4.612101932762187]
グラフニューラルネットワーク(GNN)は、グラフベースの強力なディープラーニングモデルである。
本調査は,GNNの既存の説明可能性技術の概要を概観することを目的としている。
論文 参考訳(メタデータ) (2023-06-02T23:36:49Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation
Metrics [8.795591344648294]
本稿では,説明可能なグラフニューラルネットワークに着目し,説明可能な手法を用いて分類する。
我々は,GNNの解説に共通する性能指標を提供し,今後の研究の方向性を指摘する。
論文 参考訳(メタデータ) (2022-07-26T01:45:54Z) - Explainability in Graph Neural Networks: An Experimental Survey [12.440636971075977]
グラフ表現学習のためのグラフニューラルネットワーク(GNN)が広く開発されている。
GNNは、その基盤となるメカニズムを理解できないため、ブラックボックスの問題に悩まされる。
GNNによる意思決定を説明するために、いくつかのGNN説明可能性法が提案されている。
論文 参考訳(メタデータ) (2022-03-17T11:25:41Z) - Task-Agnostic Graph Explanations [50.17442349253348]
グラフニューラルネットワーク(GNN)は、グラフ構造化データをエンコードする強力なツールとして登場した。
既存の学習ベースのGNN説明手法は、訓練においてタスク固有である。
本稿では、下流タスクの知識のない自己監督下で訓練されたタスク非依存のGNN Explainer(TAGE)を提案する。
論文 参考訳(メタデータ) (2022-02-16T21:11:47Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
本稿では,CNNに対する説明可能性の手法として,LIME(Local Interpretable Model-Agnostic Explanations)やGradient-Based Saliency Maps,Gradient-Weighted Class Activation Mapping(Grad-CAM)をGNNに拡張する。
実験結果から,LIMEに基づくアプローチは実環境における複数のタスクに対する最も効率的な説明可能性手法であり,その状態においても優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-11-01T06:27:29Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
本稿では,補助的説明の集約によるノード分類タスクの説明品質の向上手法を提案する。
SEENを適用するにはグラフを変更する必要はなく、さまざまな説明可能性のテクニックで使用することができる。
与えられたグラフからモチーフ参加ノードをマッチングする実験では、説明精度が最大12.71%向上した。
論文 参考訳(メタデータ) (2021-06-16T03:04:46Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。