Generalized Kernel Ridge Regression for Causal Inference with
Missing-at-Random Sample Selection
- URL: http://arxiv.org/abs/2111.05277v1
- Date: Tue, 9 Nov 2021 17:10:49 GMT
- Title: Generalized Kernel Ridge Regression for Causal Inference with
Missing-at-Random Sample Selection
- Authors: Rahul Singh
- Abstract summary: I propose kernel ridge regression estimators for nonparametric dose response curves and semiparametric treatment effects.
For the discrete treatment case, I prove root-n consistency, Gaussian approximation, and semiparametric efficiency.
- Score: 3.398662563413433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: I propose kernel ridge regression estimators for nonparametric dose response
curves and semiparametric treatment effects in the setting where an analyst has
access to a selected sample rather than a random sample; only for select
observations, the outcome is observed. I assume selection is as good as random
conditional on treatment and a sufficiently rich set of observed covariates,
where the covariates are allowed to cause treatment or be caused by treatment
-- an extension of missingness-at-random (MAR). I propose estimators of means,
increments, and distributions of counterfactual outcomes with closed form
solutions in terms of kernel matrix operations, allowing treatment and
covariates to be discrete or continuous, and low, high, or infinite
dimensional. For the continuous treatment case, I prove uniform consistency
with finite sample rates. For the discrete treatment case, I prove root-n
consistency, Gaussian approximation, and semiparametric efficiency.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects [1.9253333342733674]
Many causal estimands are only partially identifiable since they depend on the unobservable joint distribution between potential outcomes.
We propose a unified and model-agnostic inferential approach for a wide class of partially identified estimands.
arXiv Detail & Related papers (2023-10-12T08:17:30Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Nonparametric estimation of a covariate-adjusted counterfactual
treatment regimen response curve [2.7446241148152253]
Flexible estimation of the mean outcome under a treatment regimen is a key step toward personalized medicine.
We propose an inverse probability weighted nonparametrically efficient estimator of the smoothed regimen-response curve function.
Some finite-sample properties are explored with simulations.
arXiv Detail & Related papers (2023-09-28T01:46:24Z) - Off-policy estimation of linear functionals: Non-asymptotic theory for
semi-parametric efficiency [59.48096489854697]
The problem of estimating a linear functional based on observational data is canonical in both the causal inference and bandit literatures.
We prove non-asymptotic upper bounds on the mean-squared error of such procedures.
We establish its instance-dependent optimality in finite samples via matching non-asymptotic local minimax lower bounds.
arXiv Detail & Related papers (2022-09-26T23:50:55Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Generalized Kernel Ridge Regression for Long Term Causal Inference:
Treatment Effects, Dose Responses, and Counterfactual Distributions [6.441975792340023]
I propose estimators of treatment effects, dose responses, and counterfactual distributions.
For long term treatment effects, I prove $sqrtn$ consistency, Gaussian approximation, and semiparametric efficiency.
For long term dose responses, I prove uniform consistency with finite sample rates.
arXiv Detail & Related papers (2022-01-13T18:51:56Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Adversarial Estimation of Riesz Representers [21.510036777607397]
We propose an adversarial framework to estimate the Riesz representer using general function spaces.
We prove a nonasymptotic mean square rate in terms of an abstract quantity called the critical radius, then specialize it for neural networks, random forests, and reproducing kernel Hilbert spaces as leading cases.
arXiv Detail & Related papers (2020-12-30T19:46:57Z) - Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves [26.880628841819004]
We prove uniform consistency with improved finite sample rates via original analysis of generalized kernel ridge regression.
We extend our main results to counterfactual distributions and to causal functions identified by front and back door criteria.
arXiv Detail & Related papers (2020-10-10T00:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.