論文の概要: Random Embeddings with Optimal Accuracy
- arxiv url: http://arxiv.org/abs/2101.00029v1
- Date: Thu, 31 Dec 2020 19:00:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 17:20:37.647674
- Title: Random Embeddings with Optimal Accuracy
- Title(参考訳): 最適精度をもつランダム埋め込み
- Authors: Maciej Skorski
- Abstract要約: この研究では、Jonson-Lindenstrauss埋め込みを、分散、平均二乗誤差および指数長歪みによって測定されるように、最高の精度で構築する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work constructs Jonson-Lindenstrauss embeddings with best accuracy, as
measured by variance, mean-squared error and exponential concentration of the
length distortion. Lower bounds for any data and embedding dimensions are
determined, and accompanied by matching and efficiently samplable constructions
(built on orthogonal matrices). Novel techniques: a unit sphere
parametrization, the use of singular-value latent variables and Schur-convexity
are of independent interest.
- Abstract(参考訳): この研究は、分散、平均二乗誤差、および長さ歪みの指数集中によって測定されるように、最も正確なジョンソン・リンデンシュトラウス埋め込みを構成する。
任意のデータと埋め込み次元の低い境界は決定され、整合性および効率的なサンプリング可能な構成(直交行列上に構築される)が伴う。
新たな手法:単位球パラメトリゼーション、特異値潜在変数の使用、シュール凸性は独立した関心を持つ。
関連論文リスト
- A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting [0.0]
本研究は, ノイズおよび外周波の汚染における散乱データに多次元楕円体を適合させる, 新規で効果的な方法を提案する。
楕円体領域内でのプリミティブパラメータの探索を制約するために、均一な事前分布を組み込む。
本研究では, 顕微鏡細胞計数, 3次元再構成, 幾何学的形状近似, 磁力計の校正タスクなど, 幅広い応用に応用する。
論文 参考訳(メタデータ) (2024-07-27T14:31:51Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
プライベート平均推定に対する古典的なアプローチは、真の平均を計算し、バイアスのないがおそらく相関のあるガウスノイズを加えることである。
すべての入力データセットに対して、集中的な差分プライバシーを満たす非バイアス平均推定器が、少なくとも多くのエラーをもたらすことを示す。
論文 参考訳(メタデータ) (2023-01-31T18:47:42Z) - Wasserstein Distributionally Robust Estimation in High Dimensions:
Performance Analysis and Optimal Hyperparameter Tuning [0.0]
雑音線形測定から未知パラメータを推定するための分布的ロバストな推定フレームワークを提案する。
このような推定器の2乗誤差性能を解析する作業に着目する。
凸凹最適化問題の解法として2乗誤差を復元できることを示す。
論文 参考訳(メタデータ) (2022-06-27T13:02:59Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
ニューラルネットワーク層のBi-Lipschitz正規化は、各レイヤの特徴空間におけるデータインスタンス間の相対距離を保存する。
注意セットエンコーダを用いて,タスク固有の共分散行列を効率的に構築するために,対角的,対角的,低ランクな要素のメタ学習を提案する。
また,最終的な予測分布を達成するために,スケールしたエネルギーを利用する推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T22:04:19Z) - Confidence-Optimal Random Embeddings [0.0]
本稿では、最適でデータに富む統計信頼度境界を持つjohnson-lindenstrauss分布を考案する。
境界は、任意のデータ次元、埋め込み、および歪み耐性に対して、数値的に最良である。
統計的精度の面での先行作業の改善に加え、データ可読アプローチの無意味な体制を正確に決定します。
論文 参考訳(メタデータ) (2021-04-06T18:00:02Z) - Random extrapolation for primal-dual coordinate descent [61.55967255151027]
本稿では,データ行列の疎度と目的関数の好適な構造に適応する,ランダムに外挿した原始-双対座標降下法を提案する。
一般凸凹の場合, 主対差と目的値に対するシーケンスのほぼ確実に収束と最適サブ線形収束率を示す。
論文 参考訳(メタデータ) (2020-07-13T17:39:35Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。