論文の概要: A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting
- arxiv url: http://arxiv.org/abs/2407.19269v1
- Date: Sat, 27 Jul 2024 14:31:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 19:01:38.810187
- Title: A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting
- Title(参考訳): ロバストな多次元楕円体-特殊フィッティングへのベイズ的アプローチ
- Authors: Zhao Mingyang, Jia Xiaohong, Ma Lei, Shi Yuke, Jiang Jingen, Li Qizhai, Yan Dong-Ming, Huang Tiejun,
- Abstract要約: 本研究は, ノイズおよび外周波の汚染における散乱データに多次元楕円体を適合させる, 新規で効果的な方法を提案する。
楕円体領域内でのプリミティブパラメータの探索を制約するために、均一な事前分布を組み込む。
本研究では, 顕微鏡細胞計数, 3次元再構成, 幾何学的形状近似, 磁力計の校正タスクなど, 幅広い応用に応用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a novel and effective method for fitting multidimensional ellipsoids to scattered data in the contamination of noise and outliers. We approach the problem as a Bayesian parameter estimate process and maximize the posterior probability of a certain ellipsoidal solution given the data. We establish a more robust correlation between these points based on the predictive distribution within the Bayesian framework. We incorporate a uniform prior distribution to constrain the search for primitive parameters within an ellipsoidal domain, ensuring ellipsoid-specific results regardless of inputs. We then establish the connection between measurement point and model data via Bayes' rule to enhance the method's robustness against noise. Due to independent of spatial dimensions, the proposed method not only delivers high-quality fittings to challenging elongated ellipsoids but also generalizes well to multidimensional spaces. To address outlier disturbances, often overlooked by previous approaches, we further introduce a uniform distribution on top of the predictive distribution to significantly enhance the algorithm's robustness against outliers. We introduce an {\epsilon}-accelerated technique to expedite the convergence of EM considerably. To the best of our knowledge, this is the first comprehensive method capable of performing multidimensional ellipsoid specific fitting within the Bayesian optimization paradigm under diverse disturbances. We evaluate it across lower and higher dimensional spaces in the presence of heavy noise, outliers, and substantial variations in axis ratios. Also, we apply it to a wide range of practical applications such as microscopy cell counting, 3D reconstruction, geometric shape approximation, and magnetometer calibration tasks.
- Abstract(参考訳): 本研究は, ノイズおよび外周波の汚染における散乱データに多次元楕円体を適合させる, 新規で効果的な方法を提案する。
ベイズパラメータ推定法としてこの問題にアプローチし, 与えられた楕円形解の後方確率を最大化する。
ベイズフレームワーク内の予測分布に基づいて,これらの点間のより堅牢な相関関係を確立する。
我々は、楕円体領域内の原始パラメータの探索を制約するために、均一な事前分布を導入し、入力によらず楕円体固有の結果を保証する。
次にベイズの法則を用いて測定点とモデルデータとの接続を確立し,ノイズに対する手法のロバスト性を高める。
空間次元の独立性から,提案手法は細長い楕円体に対して高品質なフィッティングを提供するだけでなく,多次元空間によく一般化する。
従来の手法では見過ごされがちな外乱に対処するため,予測分布上に一様分布を導入し,外乱に対するアルゴリズムの堅牢性を大幅に向上させる。
本研究では, EMの収束を著しく早めるために, {\epsilon} 加速技術を導入する。
我々の知る限り、この手法はベイズ最適化パラダイムにおいて多次元楕円体特異的なフィッティングを多様な乱れの下で行うことができる最初の包括的手法である。
重騒音, 外れ値, 軸比のかなりの変動の有無で, より低次元, 高次元の空間で評価した。
また, 顕微鏡細胞計数, 3次元再構成, 幾何形状近似, 磁力計の校正タスクなど, 幅広い応用に応用する。
関連論文リスト
- Robust Representation Consistency Model via Contrastive Denoising [83.47584074390842]
ランダムな平滑化は、敵の摂動に対する堅牢性を証明する理論的保証を提供する。
拡散モデルは、ノイズ摂動サンプルを浄化するためにランダムな平滑化に成功している。
我々は,画素空間における拡散軌跡に沿った生成的モデリングタスクを,潜在空間における識別的タスクとして再構成する。
論文 参考訳(メタデータ) (2025-01-22T18:52:06Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression [2.7498981662768536]
疎線形回帰における統計的推測のためのスケーラブルな変分ベイズ法を提案する。
我々のアプローチは、平均場近似をニュアンス座標に割り当てることに依存している。
これは前処理のステップに過ぎず、平均場変動ベイズの計算上の優位性を保っている。
論文 参考訳(メタデータ) (2024-06-18T14:27:44Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
フル共分散構造を持つ変分混合は、パラメータ数による変動パラメータによる二次的な成長に苦しむ。
本稿では,変分推論のウォームスタートに使用できる初期ガウスモデル近似を構築する方法を提案する。
論文 参考訳(メタデータ) (2023-07-12T19:30:04Z) - Bayesian Pseudo-Coresets via Contrastive Divergence [5.479797073162603]
対照的な発散を利用して擬似コアセットを構築するための新しい手法を提案する。
これは擬似コアセット構築プロセスにおける近似の必要性を排除する。
複数のデータセットに対して広範な実験を行い、既存のBPC技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T17:13:50Z) - Robust Inference of Manifold Density and Geometry by Doubly Stochastic
Scaling [8.271859911016719]
我々は高次元雑音下で頑健な推論のためのツールを開発する。
提案手法は, セルタイプにまたがる技術的ノイズレベルの変動に頑健であることを示す。
論文 参考訳(メタデータ) (2022-09-16T15:39:11Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
我々はヘシアンの形成が困難である問題に対する分散最適化法を検討する。
ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
論文 参考訳(メタデータ) (2022-03-18T05:49:13Z) - Adaptive and Oblivious Randomized Subspace Methods for High-Dimensional
Optimization: Sharp Analysis and Lower Bounds [37.03247707259297]
2次統計が入力データを反映する相関ランダム行列をサンプリングすることにより、適切な適応部分空間を生成することができる。
ランダム化された近似の相対誤差は、データ行列のスペクトルの観点から厳密に特徴付けることができることを示した。
実験の結果,提案手法は様々な機械学習および最適化問題において,大幅な高速化を可能にすることがわかった。
論文 参考訳(メタデータ) (2020-12-13T13:02:31Z) - Random extrapolation for primal-dual coordinate descent [61.55967255151027]
本稿では,データ行列の疎度と目的関数の好適な構造に適応する,ランダムに外挿した原始-双対座標降下法を提案する。
一般凸凹の場合, 主対差と目的値に対するシーケンスのほぼ確実に収束と最適サブ線形収束率を示す。
論文 参考訳(メタデータ) (2020-07-13T17:39:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。