Consensus-Guided Correspondence Denoising
- URL: http://arxiv.org/abs/2101.00591v1
- Date: Sun, 3 Jan 2021 09:10:00 GMT
- Title: Consensus-Guided Correspondence Denoising
- Authors: Chen Zhao, Yixiao Ge, Jiaqi Yang, Feng Zhu, Rui Zhao, Hongsheng Li
- Abstract summary: We propose to denoise correspondences with a local-to-global consensus learning framework to robustly identify correspondence.
A novel "pruning" block is introduced to distill reliable candidates from initial matches according to their consensus scores estimated by dynamic graphs from local to global regions.
Our method outperforms state-of-the-arts on robust line fitting, wide-baseline image matching and image localization benchmarks by noticeable margins.
- Score: 67.35345850146393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Correspondence selection between two groups of feature points aims to
correctly recognize the consistent matches (inliers) from the initial noisy
matches. The selection is generally challenging since the initial matches are
generally extremely unbalanced, where outliers can easily dominate. Moreover,
random distributions of outliers lead to the limited robustness of previous
works when applied to different scenarios. To address this issue, we propose to
denoise correspondences with a local-to-global consensus learning framework to
robustly identify correspondence. A novel "pruning" block is introduced to
distill reliable candidates from initial matches according to their consensus
scores estimated by dynamic graphs from local to global regions. The proposed
correspondence denoising is progressively achieved by stacking multiple pruning
blocks sequentially. Our method outperforms state-of-the-arts on robust line
fitting, wide-baseline image matching and image localization benchmarks by
noticeable margins and shows promising generalization capability on different
distributions of initial matches.
Related papers
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - JointMatch: A Unified Approach for Diverse and Collaborative
Pseudo-Labeling to Semi-Supervised Text Classification [65.268245109828]
Semi-supervised text classification (SSTC) has gained increasing attention due to its ability to leverage unlabeled data.
Existing approaches based on pseudo-labeling suffer from the issues of pseudo-label bias and error accumulation.
We propose JointMatch, a holistic approach for SSTC that addresses these challenges by unifying ideas from recent semi-supervised learning.
arXiv Detail & Related papers (2023-10-23T05:43:35Z) - Deep Probabilistic Graph Matching [72.6690550634166]
We propose a deep learning-based graph matching framework that works for the original QAP without compromising on the matching constraints.
The proposed method is evaluated on three popularly tested benchmarks (Pascal VOC, Willow Object and SPair-71k) and it outperforms all previous state-of-the-arts on all benchmarks.
arXiv Detail & Related papers (2022-01-05T13:37:27Z) - Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise
Comparisons [85.5955376526419]
In rank aggregation problems, users exhibit various accuracy levels when comparing pairs of items.
We propose an elimination-based active sampling strategy, which estimates the ranking of items via noisy pairwise comparisons.
We prove that our algorithm can return the true ranking of items with high probability.
arXiv Detail & Related papers (2021-10-08T13:51:55Z) - Ensemble Learning with Manifold-Based Data Splitting for Noisy Label
Correction [20.401661156102897]
noisy labels in training data can significantly degrade a model's generalization performance.
We propose an ensemble learning method to correct noisy labels by exploiting the local structures of feature manifold.
Our experiments on real-world noisy label datasets demonstrate the superiority of the proposed method over existing state-of-the-arts.
arXiv Detail & Related papers (2021-03-13T07:24:58Z) - Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [38.38520763114715]
We present Patch2Pix, a novel refinement network that refines match proposals by regressing pixel-level matches from the local regions defined by those proposals.
We show that our refinement network significantly improves the performance of correspondence networks on image matching, homography estimation, and localization tasks.
arXiv Detail & Related papers (2020-12-03T13:44:02Z) - SetRank: A Setwise Bayesian Approach for Collaborative Ranking from
Implicit Feedback [50.13745601531148]
We propose a novel setwise Bayesian approach for collaborative ranking, namely SetRank, to accommodate the characteristics of implicit feedback in recommender system.
Specifically, SetRank aims at maximizing the posterior probability of novel setwise preference comparisons.
We also present the theoretical analysis of SetRank to show that the bound of excess risk can be proportional to $sqrtM/N$.
arXiv Detail & Related papers (2020-02-23T06:40:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.