論文の概要: Brain Tumor Segmentation and Survival Prediction using Automatic Hard
mining in 3D CNN Architecture
- arxiv url: http://arxiv.org/abs/2101.01546v1
- Date: Tue, 5 Jan 2021 14:34:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 11:29:30.823734
- Title: Brain Tumor Segmentation and Survival Prediction using Automatic Hard
mining in 3D CNN Architecture
- Title(参考訳): 3次元CNNアーキテクチャにおける自動ハードマイニングによる脳腫瘍分離と生存予測
- Authors: Vikas Kumar Anand, Sanjeev Grampurohit, Pranav Aurangabadkar, Avinash
Kori, Mahendra Khened, Raghavendra S Bhat, Ganapathy Krishnamurthi
- Abstract要約: 我々は3次元完全畳み込みニューラルネットワーク(CNN)を用いて、マルチモーダル磁気共鳴画像(MRI)からグリオーマとその構成成分を抽出する。
このアーキテクチャでは、密度の高い接続パターンを使用して重量と残留接続数を削減し、BraTS 2018データセットでこのモデルをトレーニングした結果の重量は0.448である。
シース類似度係数(DSC)の閾値を高めて、エポックの増加とともにハードケースを選択することにより、セグメンテーションタスクの難しいケースを訓練するために、トレーニング中にハードマイニングを行う。
- 参考スコア(独自算出の注目度): 0.30098583327398537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We utilize 3-D fully convolutional neural networks (CNN) to segment gliomas
and its constituents from multimodal Magnetic Resonance Images (MRI). The
architecture uses dense connectivity patterns to reduce the number of weights
and residual connections and is initialized with weights obtained from training
this model with BraTS 2018 dataset. Hard mining is done during training to
train for the difficult cases of segmentation tasks by increasing the dice
similarity coefficient (DSC) threshold to choose the hard cases as epoch
increases. On the BraTS2020 validation data (n = 125), this architecture
achieved a tumor core, whole tumor, and active tumor dice of 0.744, 0.876,
0.714,respectively. On the test dataset, we get an increment in DSC of tumor
core and active tumor by approximately 7%. In terms of DSC, our network
performances on the BraTS 2020 test data are 0.775, 0.815, and 0.85 for
enhancing tumor, tumor core, and whole tumor, respectively. Overall survival of
a subject is determined using conventional machine learning from rediomics
features obtained using a generated segmentation mask. Our approach has
achieved 0.448 and 0.452 as the accuracy on the validation and test dataset.
- Abstract(参考訳): 我々は3次元完全畳み込みニューラルネットワーク(CNN)を用いて、マルチモーダル磁気共鳴画像(MRI)からグリオーマとその構成成分を抽出する。
このアーキテクチャは、重みと残留接続の数を減らすために密結合パターンを使用し、brats 2018データセットでトレーニングした重みで初期化される。
シース類似度係数(DSC)の閾値を高めて、エポックの増加に伴ってハードケースを選択することにより、セグメンテーションタスクの難しいケースの訓練を行う。
BraTS2020の検証データ(n = 125)では,腫瘍コア,全腫瘍,活性腫瘍サイス0.744,0.876,0.714を達成した。
テストデータセットでは,腫瘍コアと活性腫瘍のDSCを約7%増加させた。
DSCでは,BraTS 2020テストデータのネットワーク性能は0.775,0.815,0.85で,腫瘍,腫瘍コア,腫瘍全体を増強する。
生成したセグメンテーションマスクを用いて得られたレジオミクス特徴から従来の機械学習を用いて被験者の全体的な生存率を決定する。
検証およびテストデータセットの精度は0.448および0.452である。
関連論文リスト
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Multi-class Brain Tumor Segmentation using Graph Attention Network [3.3635982995145994]
この研究は、MRIとグラフニューラルネットワーク(GNN)の進歩を生かして、効率的な脳腫瘍要約モデルを導入する。
このモデルは、ボリュームMRIを領域隣接グラフ(RAG)として表現し、グラフ注意ネットワーク(GAT)を通して腫瘍の種類を特定することを学習する。
論文 参考訳(メタデータ) (2023-02-11T04:30:40Z) - Hybrid Window Attention Based Transformer Architecture for Brain Tumor
Segmentation [28.650980942429726]
細かな特徴を抽出するための2つのウィンドウ化戦略に従うボリューム視覚変換器を提案する。
FeTS Challenge 2022データセット上で,ネットワークアーキテクチャをトレーニングし,評価した。
オンライン検証データセットのパフォーマンスは以下の通りである。 Dice similarity Score of 81.71%, 91.38%, 85.40%。
論文 参考訳(メタデータ) (2022-09-16T03:55:48Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - A self-supervised learning strategy for postoperative brain cavity
segmentation simulating resections [46.414990784180546]
畳み込みニューラルネットワーク(CNN)は最先端の画像セグメンテーション技術である。
CNNはトレーニングに大量の注釈付きデータセットを必要とする。
自己教師型学習戦略は、トレーニングにラベルのないデータを活用することができる。
論文 参考訳(メタデータ) (2021-05-24T12:27:06Z) - Glioma Prognosis: Segmentation of the Tumor and Survival Prediction
using Shape, Geometric and Clinical Information [13.822139791199106]
我々は,ハイパーコラムを用いた畳み込みニューラルネットワーク(cnn)を用いて,健常脳組織から腫瘍を分離する。
私たちのモデルは、腫瘍全体、腫瘍コアおよび増強腫瘍の平均ダイス精度87.315%、77.04%および70.22%を達成した。
論文 参考訳(メタデータ) (2021-04-02T10:49:05Z) - HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation [17.756591105686]
本稿では,3次元重み付き畳み込み層を積み重ねることで,マルチスケール情報を取得するハイパーデンスインセプション3D UNet(HI-Net)を提案する。
BRATS 2020テストセットの予備結果は、提案されたアプローチにより、ET、WT、TCのダイス(DSC)スコアがそれぞれ0.79457、0.87494、0.83712であることを示しています。
論文 参考訳(メタデータ) (2020-12-12T09:09:04Z) - DR-Unet104 for Multimodal MRI brain tumor segmentation [7.786297008452384]
脳MRIにおける病変分割のために,104層の畳み込み層(DR-Unet104)を有する2次元奥行きUnetを提案する。
Unetエンコーダに'bottleneck'残ブロックを追加し、各畳み込みブロックスタックの後にドロップアウトを追加するなど、Unetアーキテクチャに複数の追加を加えています。
コンボリューションは2次元のコンボリューションしかなく,低消費電力コンピュータで使用可能なメリットも備えた,競争力のある病変分割アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-11-04T01:24:26Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
U-netのようなニューラルネットワークを用いた脳腫瘍セグメント化作業の自動化と標準化を行う。
2つの独立したモデルのアンサンブルが訓練され、それぞれが脳腫瘍のセグメンテーションマップを作成した。
我々の解は、最終試験データセットにおいて、Diceの0.79、0.89、0.84、およびHausdorffの95%の20.4、6.7、19.5mmを達成した。
論文 参考訳(メタデータ) (2020-10-30T14:36:10Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。