論文の概要: Hybrid Window Attention Based Transformer Architecture for Brain Tumor
Segmentation
- arxiv url: http://arxiv.org/abs/2209.07704v1
- Date: Fri, 16 Sep 2022 03:55:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-19 13:17:54.366592
- Title: Hybrid Window Attention Based Transformer Architecture for Brain Tumor
Segmentation
- Title(参考訳): ハイブリッドウィンドウアテンションを用いた脳腫瘍セグメンテーションのためのトランスフォーマーアーキテクチャ
- Authors: Himashi Peiris, Munawar Hayat, Zhaolin Chen, Gary Egan, Mehrtash
Harandi
- Abstract要約: 細かな特徴を抽出するための2つのウィンドウ化戦略に従うボリューム視覚変換器を提案する。
FeTS Challenge 2022データセット上で,ネットワークアーキテクチャをトレーニングし,評価した。
オンライン検証データセットのパフォーマンスは以下の通りである。 Dice similarity Score of 81.71%, 91.38%, 85.40%。
- 参考スコア(独自算出の注目度): 28.650980942429726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As intensities of MRI volumes are inconsistent across institutes, it is
essential to extract universal features of multi-modal MRIs to precisely
segment brain tumors. In this concept, we propose a volumetric vision
transformer that follows two windowing strategies in attention for extracting
fine features and local distributional smoothness (LDS) during model training
inspired by virtual adversarial training (VAT) to make the model robust. We
trained and evaluated network architecture on the FeTS Challenge 2022 dataset.
Our performance on the online validation dataset is as follows: Dice Similarity
Score of 81.71%, 91.38% and 85.40%; Hausdorff Distance (95%) of 14.81 mm, 3.93
mm, 11.18 mm for the enhancing tumor, whole tumor, and tumor core,
respectively. Overall, the experimental results verify our method's
effectiveness by yielding better performance in segmentation accuracy for each
tumor sub-region. Our code implementation is publicly available :
https://github.com/himashi92/vizviva_fets_2022
- Abstract(参考訳): MRIボリュームの強度は施設間で矛盾するため、脳腫瘍を正確に分類するためには、マルチモーダルMRIの普遍的な特徴を抽出することが不可欠である。
本稿では,仮想対角訓練(VAT)にインスパイアされたモデルトレーニングにおいて,細部の特徴抽出と局所分布平滑性(LDS)に着目した2つのウィンドウ化戦略に従うボリューム視覚変換器を提案する。
FeTS Challenge 2022データセットでネットワークアーキテクチャをトレーニングし、評価しました。
オンライン検証データセットの性能は以下の通りである: Dice similarity Score of 81.71%, 91.38%, 85.40%; Hausdorff Distance (95%) of 14.81 mm, 3.93 mm, 11.18 mm for the enhance tumor, whole tumor, and tumor core。
以上の結果から,腫瘍サブリージョンごとのセグメンテーション精度を向上し,本手法の有効性を検証した。
コード実装は公開されています。 https://github.com/himashi92/vizviva_fets_2022
関連論文リスト
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
本研究では,ONet と UNet の修正版を用いた新しいアンサンブル手法を提案する。
データ拡張により、さまざまなスキャンプロトコル間の堅牢性と精度が保証される。
以上の結果から,この高度なアンサンブルアプローチは診断精度の向上に期待できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-14T15:29:32Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Multi-class Brain Tumor Segmentation using Graph Attention Network [3.3635982995145994]
この研究は、MRIとグラフニューラルネットワーク(GNN)の進歩を生かして、効率的な脳腫瘍要約モデルを導入する。
このモデルは、ボリュームMRIを領域隣接グラフ(RAG)として表現し、グラフ注意ネットワーク(GAT)を通して腫瘍の種類を特定することを学習する。
論文 参考訳(メタデータ) (2023-02-11T04:30:40Z) - Improving Deep Learning Models for Pediatric Low-Grade Glioma Tumors
Molecular Subtype Identification Using 3D Probability Distributions of Tumor
Location [0.0]
pLGGサブタイプ同定のためのCNNモデルは腫瘍セグメンテーションに依存している。
我々はMRIデータにおける腫瘍位置確率を用いてCNNモデルを拡張することを提案する。
腫瘍位置をCNNモデルに組み込むことにより,統計的に有意な改善が得られた。
論文 参考訳(メタデータ) (2022-10-13T18:30:11Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Glioma Prognosis: Segmentation of the Tumor and Survival Prediction
using Shape, Geometric and Clinical Information [13.822139791199106]
我々は,ハイパーコラムを用いた畳み込みニューラルネットワーク(cnn)を用いて,健常脳組織から腫瘍を分離する。
私たちのモデルは、腫瘍全体、腫瘍コアおよび増強腫瘍の平均ダイス精度87.315%、77.04%および70.22%を達成した。
論文 参考訳(メタデータ) (2021-04-02T10:49:05Z) - Brain Tumor Segmentation and Survival Prediction using Automatic Hard
mining in 3D CNN Architecture [0.30098583327398537]
我々は3次元完全畳み込みニューラルネットワーク(CNN)を用いて、マルチモーダル磁気共鳴画像(MRI)からグリオーマとその構成成分を抽出する。
このアーキテクチャでは、密度の高い接続パターンを使用して重量と残留接続数を削減し、BraTS 2018データセットでこのモデルをトレーニングした結果の重量は0.448である。
シース類似度係数(DSC)の閾値を高めて、エポックの増加とともにハードケースを選択することにより、セグメンテーションタスクの難しいケースを訓練するために、トレーニング中にハードマイニングを行う。
論文 参考訳(メタデータ) (2021-01-05T14:34:16Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
論文 参考訳(メタデータ) (2020-12-30T20:44:55Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
U-netのようなニューラルネットワークを用いた脳腫瘍セグメント化作業の自動化と標準化を行う。
2つの独立したモデルのアンサンブルが訓練され、それぞれが脳腫瘍のセグメンテーションマップを作成した。
我々の解は、最終試験データセットにおいて、Diceの0.79、0.89、0.84、およびHausdorffの95%の20.4、6.7、19.5mmを達成した。
論文 参考訳(メタデータ) (2020-10-30T14:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。