Quantum nonlinear optics based on two-dimensional Rydberg atom arrays
- URL: http://arxiv.org/abs/2101.01936v1
- Date: Wed, 6 Jan 2021 09:28:32 GMT
- Title: Quantum nonlinear optics based on two-dimensional Rydberg atom arrays
- Authors: Mariona Moreno-Cardoner, Daniel Goncalves and Darrick E. Chang
- Abstract summary: We explore the combination of sub-wavelength, two-dimensional atomic arrays and Rydberg interactions as a powerful platform to realize strong, coherent interactions.
We show that such a system enables a coherent photon-photon gate or switch, with an error scaling significantly better than the best known scaling in a disordered ensemble.
Although this a priori represents a complicated, many-body quantum driven dissipative system, we find that the behavior can be captured well by a semi-classical model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Here, we explore the combination of sub-wavelength, two-dimensional atomic
arrays and Rydberg interactions as a powerful platform to realize strong,
coherent interactions between individual photons with high fidelity. In
particular, the spatial ordering of the atoms guarantees efficient atom-light
interactions without the possibility of scattering light into unwanted
directions, for example, allowing the array to act as a perfect mirror for
individual photons. In turn, Rydberg interactions enable single photons to
alter the optical response of the array within a potentially large blockade
radius $R_b$, which can effectively punch a large "hole" for subsequent
photons. We show that such a system enables a coherent photon-photon gate or
switch, with an error scaling $\sim R_b^{-4}$ that is significantly better than
the best known scaling in a disordered ensemble. We also investigate the
optical properties of the system in the limit of strong input intensities.
Although this a priori represents a complicated, many-body quantum driven
dissipative system, we find that the behavior can be captured well by a
semi-classical model based on holes punched in a classical mirror.
Related papers
- Efficient nuclear spin - photon entanglement with optical routing [0.0]
Quantum networks and distributed quantum computers rely on entanglement generation between photons and long-lived quantum memories.
Here, we maximize the efficiency for the detection of hybrid entanglement between a nuclear spin qubit in diamond with a photonic time-bin qubit.
Our results thus pave the way for the future high-performance quantum networks.
arXiv Detail & Related papers (2024-08-03T17:01:03Z) - Realisation of a Coherent and Efficient One-Dimensional Atom [0.15274583259797847]
A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates.
Here, we use a semiconductor quantum dot in an open microcavity as an implementation of a one-dimensional atom.
Our results pave the way towards the creation of exotic photonic states and two-photon phase gates.
arXiv Detail & Related papers (2024-02-19T21:48:12Z) - Quantum Optics with Rydberg Superatoms [0.49478969093606673]
Quantum optics based on Rydberg atoms is a powerful platform for light manipulation at the few-photon level.
We review the derivation of the collective coupling between a Rydberg superatom and a single light mode.
We briefly review applications of Rydberg superatoms to quantum optics such as single-photon generation and single-photon subtraction.
arXiv Detail & Related papers (2023-12-06T18:11:04Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - A chiral one-dimensional atom using a quantum dot in an open microcavity [0.45507178426690204]
In nanostructures, the light-matter interaction can be engineered to be chiral.
Chiral quantum optics has applications in creating nanoscopic single-photon routers, circulators, phase-shifters and two-photon gates.
arXiv Detail & Related papers (2021-10-06T10:59:33Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Generation of Photonic Matrix Product States with Rydberg Atomic Arrays [63.62764375279861]
We show how one can deterministically generate photonic matrix product states with high bond and physical dimensions with an atomic array.
We develop a quantum gate and an optimal control approach to universally control the system and analyze the photon retrieval efficiency of atomic arrays.
arXiv Detail & Related papers (2020-11-08T07:59:55Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Exotic photonic molecules via Lennard-Jones-like potentials [48.7576911714538]
We show a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT)
This potential is achieved by tuning Rydberg states to a F"orster resonance with other Rydberg states.
For a few-body problem, the multi-body interactions have a significant impact on the geometry of the molecular ground state.
arXiv Detail & Related papers (2020-03-17T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.