Quantum Optics with Rydberg Superatoms
- URL: http://arxiv.org/abs/2312.03649v1
- Date: Wed, 6 Dec 2023 18:11:04 GMT
- Title: Quantum Optics with Rydberg Superatoms
- Authors: Jan Kumlin, Christoph Braun, Christoph Tresp, Nina Stiesdal, Sebastian
Hofferberth, Asaf Paris-Mandoki
- Abstract summary: Quantum optics based on Rydberg atoms is a powerful platform for light manipulation at the few-photon level.
We review the derivation of the collective coupling between a Rydberg superatom and a single light mode.
We briefly review applications of Rydberg superatoms to quantum optics such as single-photon generation and single-photon subtraction.
- Score: 0.49478969093606673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum optics based on highly excited atoms, also known as Rydberg atoms,
has cemented itself as a powerful platform for the manipulation of light at the
few-photon level. The Rydberg blockade, resulting from the strong interaction
between individual Rydberg atoms, can turn a large ensemble of atoms into a
system which collectively resembles a single two-level emitter, a so-called
Rydberg superatom. The coupling of this artificial emitter to a driving
photonic mode is collectively enhanced by Rydberg interactions, enabling strong
coherent coupling at the few-photon level in free-space. The exquisite level of
control achievable through this has already demonstrated its utility in
applications of quantum computing and information processing. Here, we review
the derivation of the collective coupling between a Rydberg superatom and a
single light mode and discuss the similarity of this free-space setup to
waveguide quantum electrodynamics systems of quantum emitters coupled to
photonic waveguides. We also briefly review applications of Rydberg superatoms
to quantum optics such as single-photon generation and single-photon
subtraction.
Related papers
- Engineering quantum states from a spatially structured quantum eraser [0.0]
Quantum interference can be enabled by projecting the quantum state onto ambiguous properties that render the photons indistinguishable.
By combining these ideas, here we design and experimentally demonstrate a simple and robust scheme that tailors quantum interference to engineer photonic states.
We believe these spatially-engineered multi-photon quantum states may be of significance in fields such as quantum metrology, microscopy, and communications.
arXiv Detail & Related papers (2023-06-24T00:11:36Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - State Carving in a Chirally-Coupled Atom-Nanophotonic Cavity [0.0]
We study the reflectivity spectrum in an atom-photonic cavity with collective nonreciprocal couplings.
Our results pave the way toward quantum engineering of multiqubit states.
arXiv Detail & Related papers (2022-12-28T16:19:33Z) - A subwavelength atomic array switched by a single Rydberg atom [0.0]
Enhancing light-matter coupling at the level of single quanta is essential for numerous applications in quantum science.
Cooperative optical response of subwavelength atomic arrays has been found to open new pathways for such strong light-matter couplings.
We demonstrate spatial control over the optical response of an atomically thin mirror formed by a subwavelength array of atoms in free space.
arXiv Detail & Related papers (2022-07-19T16:27:44Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Quantum Hall states for Rydberg atoms with laser-assisted dipole-dipole
interactions [1.9662978733004601]
We propose a novel scheme with laser-assisted dipole-dipole interactions to realize synthetic magnetic field for Rydberg atoms in a two-dimensional array configuration.
This work opens an avenue for the realization of the highly-sought-after bosonic topological orders using Rydberg atoms.
arXiv Detail & Related papers (2022-04-14T16:28:07Z) - Single-shot measurement of a Rydberg superatom via collective photon
burst [5.150284257238128]
We realize the deterministic measurement of a superatom qubit via photon burst in a single shot.
We achieve a single-shot measurement fidelity of 93.2% in 4.8 us.
Our work complements the experimental toolbox of harnessing Rydberg superatom for quantum information applications.
arXiv Detail & Related papers (2021-06-21T04:58:21Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.