論文の概要: Cross-Validation and Uncertainty Determination for Randomized Neural
Networks with Applications to Mobile Sensors
- arxiv url: http://arxiv.org/abs/2101.01990v1
- Date: Wed, 6 Jan 2021 12:28:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 00:11:53.436831
- Title: Cross-Validation and Uncertainty Determination for Randomized Neural
Networks with Applications to Mobile Sensors
- Title(参考訳): ランダム化ニューラルネットワークのクロスバリデーションと不確実性判定とモバイルセンサへの応用
- Authors: Ansgar Steland and Bart E. Pieters
- Abstract要約: 極端学習マシンは、限られたコンピュータリソースとグリーン機械学習の下で教師付き学習を行うための魅力的で効率的な方法を提供する。
このようなネットワークと回帰手法による教師あり学習について,一般化と予測誤差の整合性および境界性の観点から考察した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Randomized artificial neural networks such as extreme learning machines
provide an attractive and efficient method for supervised learning under
limited computing ressources and green machine learning. This especially
applies when equipping mobile devices (sensors) with weak artificial
intelligence. Results are discussed about supervised learning with such
networks and regression methods in terms of consistency and bounds for the
generalization and prediction error. Especially, some recent results are
reviewed addressing learning with data sampled by moving sensors leading to
non-stationary and dependent samples.
As randomized networks lead to random out-of-sample performance measures, we
study a cross-validation approach to handle the randomness and make use of it
to improve out-of-sample performance. Additionally, a computationally efficient
approach to determine the resulting uncertainty in terms of a confidence
interval for the mean out-of-sample prediction error is discussed based on
two-stage estimation. The approach is applied to a prediction problem arising
in vehicle integrated photovoltaics.
- Abstract(参考訳): 極端学習マシンのようなランダム化された人工ニューラルネットワークは、限られたコンピュータリソースとグリーン機械学習の下で教師付き学習を行うための魅力的で効率的な方法を提供する。
これは、モバイルデバイス(センサー)に弱い人工知能を装備する際に特に当てはまる。
このようなネットワークと回帰手法による教師あり学習について,一般化と予測誤差の整合性および境界性の観点から考察した。
特に,センサを移動させて非定常かつ依存的なサンプルに導くデータを用いて,最近の研究成果をレビューした。
ランダム化されたネットワークがサンプル外性能のランダム化に繋がるので、ランダム性に対処し、サンプル外性能を改善するためのクロスバリデーション手法を検討する。
さらに, 2段階推定に基づいて, 平均外乱予測誤差に対する信頼区間の観点から, 結果の不確かさを計算的に効率的に判定する手法について議論した。
本手法は車両統合太陽光発電における予測問題に適用される。
関連論文リスト
- An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
本稿では,ニューラルネットワークの入出力分布を正確に特徴付けるために,サンプルフリーモーメント伝搬法を提案する。
この手法の鍵となる有効性は、非線形活性化関数を通した確率変数の共分散に対する解析解である。
学習ニューラルネットワークの入力出力分布を分析し,ベイズニューラルネットワークを訓練する実験において,提案手法の適用性およびメリットを示す。
論文 参考訳(メタデータ) (2024-03-24T14:08:24Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
本稿では,ランダムアクティベーション関数(RAF)アンサンブルを用いた不確実性定量化手法を提案する。
RAF アンサンブルは、合成データセットと実世界のデータセットの両方において、最先端のアンサンブル不確実性定量化手法より優れている。
論文 参考訳(メタデータ) (2023-02-28T13:17:56Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - Window-Based Distribution Shift Detection for Deep Neural Networks [21.73028341299301]
本研究では,データストリームを受信したディープニューラルネットワーク(DNN)の正常動作をモニタリングする場合について検討する。
選択的予測原理を用いて,DNNの分布偏差検出手法を提案する。
我々の新しい検出法は、最先端技術よりもかなり少ない時間を消費しながら、オンパー以上の性能を発揮する。
論文 参考訳(メタデータ) (2022-10-19T21:27:25Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
本研究では,人混みの軌跡を予測できるニューラルネットワークシステムを提案する。
解釈可能なルールベースのインテントを学び、ニューラルネットワークの表現可能性を利用してシーン固有の残差をモデル化する。
私たちのアーキテクチャは、インタラクション中心のベンチマークTrajNet++でテストされています。
論文 参考訳(メタデータ) (2021-05-07T09:22:34Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Detecting Adversarial Examples in Learning-Enabled Cyber-Physical
Systems using Variational Autoencoder for Regression [4.788163807490198]
ディープニューラルネットワーク(DNN)は堅牢ではなく、敵対的な例によってモデルが誤った予測をする可能性があることが示されている。
本稿では,CPS の回帰に使用される LEC の逆例を効率よく検出する問題について考察する。
自動運転車用オープンソースシミュレータに実装された緊急ブレーキシステムを用いて,その手法を実証する。
論文 参考訳(メタデータ) (2020-03-21T11:15:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。