論文の概要: Teach me to play, gamer! Imitative learning in computer games via
linguistic description of complex phenomena and decision tree
- arxiv url: http://arxiv.org/abs/2101.02264v1
- Date: Wed, 6 Jan 2021 21:14:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 01:47:39.908614
- Title: Teach me to play, gamer! Imitative learning in computer games via
linguistic description of complex phenomena and decision tree
- Title(参考訳): 遊ばせてくれ ゲーマー!
複雑な現象と決定木を言語的に記述したコンピュータゲームにおけるImitative Learning
- Authors: Clemente Rubio-Manzano, Tomas Lermanda, CLaudia Martinez, Alejandra
Segura, Christian Vidal
- Abstract要約: 本稿では,複雑な現象の言語記述に基づく模倣による新しい機械学習モデルを提案する。
この手法は,ゲーム開発における知的エージェントの動作を設計し,実装するための優れた代替手段となる。
- 参考スコア(独自算出の注目度): 55.41644538483948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we present a new machine learning model by imitation based
on the linguistic description of complex phenomena. The idea consists of,
first, capturing the behaviour of human players by creating a computational
perception network based on the execution traces of the games and, second,
representing it using fuzzy logic (linguistic variables and if-then rules).
From this knowledge, a set of data (dataset) is automatically created to
generate a learning model based on decision trees. This model will be used
later to automatically control the movements of a bot. The result is an
artificial agent that mimics the human player. We have implemented, tested and
evaluated this technology. The results obtained are interesting and promising,
showing that this method can be a good alternative to design and implement the
behaviour of intelligent agents in video game development.
- Abstract(参考訳): 本稿では,複雑な現象の言語的記述に基づく模倣による新しい機械学習モデルを提案する。
このアイデアは、まず、ゲームの実行トレースに基づいて計算知覚ネットワークを作成し、次にファジィ論理(言語変数とif-then規則)を用いてそれを表現することによって、人間のプレイヤーの振る舞いを捉える。
この知識から、一連のデータ(データセット)が自動的に作成され、決定木に基づく学習モデルを生成する。
このモデルは後にボットの動きを自動的に制御するために使われる。
その結果、人間のプレイヤーを模倣する人工エージェントが生まれる。
私たちはこの技術を実装、テスト、評価しました。
その結果,ゲーム開発における知的エージェントの動作を設計・実装する上で,本手法が優れた代替手段となる可能性が示唆された。
関連論文リスト
- Learning to Play Video Games with Intuitive Physics Priors [2.1548132286330453]
我々は、多数のビデオゲームでよく一般化されたオブジェクトベースの入力表現を設計する。
これらの表現を用いて,幼児に類似したゲームを学ぶエージェントの能力を評価する。
以上の結果から,人間のようなオブジェクトインタラクションのセットアップが,複数のビデオゲームを遊べるように学習できることが示唆された。
論文 参考訳(メタデータ) (2024-09-20T20:30:27Z) - Explaining How a Neural Network Play the Go Game and Let People Learn [26.192580802652742]
AIモデルは、Goのゲームで人間のプレイヤーを追い越した。
AIモデルは、人間のプレイヤーを超えて、Goゲームに関する新しい知識をエンコードしたと広く信じられている。
論文 参考訳(メタデータ) (2023-10-15T13:57:50Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
ニューラルビデオゲームシミュレータのためのPGM(Promptable Game Model)を提案する。
ユーザーは高レベルのアクションシーケンスと低レベルのアクションシーケンスでゲームを実行することができる。
私たちのPGMは、エージェントの目標をプロンプトの形で指定することで、ディレクターのモードをアンロックします。
提案手法は,既存のニューラルビデオゲームシミュレータのレンダリング品質を著しく上回り,現在の最先端の能力を超えたアプリケーションをアンロックする。
論文 参考訳(メタデータ) (2023-03-23T17:43:17Z) - Learning to Scaffold: Optimizing Model Explanations for Teaching [74.25464914078826]
我々は3つの自然言語処理とコンピュータビジョンタスクのモデルを訓練する。
筆者らは,本フレームワークで抽出した説明文を学習した学生が,従来の手法よりもはるかに効果的に教師をシミュレートできることを発見した。
論文 参考訳(メタデータ) (2022-04-22T16:43:39Z) - AI in (and for) Games [0.9920773256693857]
この章では、人工知能(AI)/機械学習(ML)アルゴリズムとデジタルゲームとの関係について概説する。
一方、ai/ml研究者は、人間の感情的活動、プレイヤーの行動に関する大規模かつ内部的なデータセットを生成できる。
一方、ゲームは知的アルゴリズムを利用して、ゲームレベルのテストの自動化、コンテンツの生成、知的でレスポンシブな非プレイヤーキャラクタ(NPC)の開発、プレイヤーの振る舞いの予測と応答を行うことができる。
論文 参考訳(メタデータ) (2021-05-07T08:57:07Z) - Towards Action Model Learning for Player Modeling [1.9659095632676098]
プレイヤーモデリングは、ゲームにおけるプレイヤーの振る舞いを正確に近似する計算モデルを作ろうとする。
ほとんどのプレイヤーモデリング技術はドメイン知識に依存しており、ゲーム間で転送できない。
本稿では,アクションモデル学習(AML)を用いて,ドメインに依存しない方法でプレーヤモデルを学習する。
論文 参考訳(メタデータ) (2021-03-09T19:32:30Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
反実用説明システムは、入力画像を変更して反実用推論を可能にする。
本稿では, 対向画像から画像への変換技術に基づく, 対向画像の説明を新たに生成する手法を提案する。
その結果,我々のアプローチは,2つの最先端技術システムよりも,メンタルモデル,説明満足度,信頼度,感情,自己効力に関して有意に優れた結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-12-22T10:08:05Z) - Explainability via Responsibility [0.9645196221785693]
本稿では,特定のトレーニングインスタンスをユーザに提供する,説明可能な人工知能へのアプローチを提案する。
我々は、AIエージェントの動作の説明を人間のユーザに提供する能力を近似することで、このアプローチを評価する。
論文 参考訳(メタデータ) (2020-10-04T20:41:03Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Model-Based Reinforcement Learning for Atari [89.3039240303797]
エージェントがモデルフリーの手法よりも少ないインタラクションでAtariゲームを解くことができることを示す。
本実験は,エージェントと環境間の100kの相互作用の少ないデータ構造における,AtariゲームにおけるSimPLeの評価である。
論文 参考訳(メタデータ) (2019-03-01T15:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。