論文の概要: AI in (and for) Games
- arxiv url: http://arxiv.org/abs/2105.03123v1
- Date: Fri, 7 May 2021 08:57:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-10 18:30:15.301236
- Title: AI in (and for) Games
- Title(参考訳): ゲームにおける(そして)AI
- Authors: Kostas Karpouzis and George Tsatiris
- Abstract要約: この章では、人工知能(AI)/機械学習(ML)アルゴリズムとデジタルゲームとの関係について概説する。
一方、ai/ml研究者は、人間の感情的活動、プレイヤーの行動に関する大規模かつ内部的なデータセットを生成できる。
一方、ゲームは知的アルゴリズムを利用して、ゲームレベルのテストの自動化、コンテンツの生成、知的でレスポンシブな非プレイヤーキャラクタ(NPC)の開発、プレイヤーの振る舞いの予測と応答を行うことができる。
- 参考スコア(独自算出の注目度): 0.9920773256693857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This chapter outlines the relation between artificial intelligence (AI) /
machine learning (ML) algorithms and digital games. This relation is two-fold:
on one hand, AI/ML researchers can generate large, in-the-wild datasets of
human affective activity, player behaviour (i.e. actions within the game
world), commercial behaviour, interaction with graphical user interface
elements or messaging with other players, while games can utilise intelligent
algorithms to automate testing of game levels, generate content, develop
intelligent and responsive non-player characters (NPCs) or predict and respond
player behaviour across a wide variety of player cultures. In this work, we
discuss some of the most common and widely accepted uses of AI/ML in games and
how intelligent systems can benefit from those, elaborating on estimating
player experience based on expressivity and performance, and on generating
proper and interesting content for a language learning game.
- Abstract(参考訳): この章では、人工知能(AI)/機械学習(ML)アルゴリズムとデジタルゲームとの関係について概説する。
この関係は2つある:一方、AI/ML研究者は、人間の感情活動、プレイヤーの行動(つまりプレイヤーの行動)の巨大な、その内部のデータセットを生成することができる。
ゲーム内のアクション)、商業的な振る舞い、グラフィカルなユーザーインターフェース要素とのインタラクション、または他のプレイヤーとのメッセージング、ゲームはインテリジェントなアルゴリズムを利用してゲームレベルのテスト、コンテンツの生成、インテリジェントでレスポンシブなノンプレイヤーキャラクタ(npcs)の開発、プレイヤーのさまざまな文化におけるプレイヤーの振る舞いの予測と対応を自動化できる。
本稿では、ゲームにおけるAI/MLの最も一般的で広く受け入れられている使用方法と、表現性とパフォーマンスに基づくプレイヤー体験の推定と、言語学習ゲームにおける適切な、興味深いコンテンツの生成について論じる。
関連論文リスト
- Scaling Instructable Agents Across Many Simulated Worlds [70.97268311053328]
私たちのゴールは、シミュレーションされた3D環境で人間ができることを何でも達成できるエージェントを開発することです。
我々のアプローチは、最小限の仮定を示唆しながら、言語駆動の一般性に焦点を当てている。
我々のエージェントは、汎用的なヒューマンライクなインタフェースを使って、リアルタイムで環境と対話する。
論文 参考訳(メタデータ) (2024-03-13T17:50:32Z) - DanZero+: Dominating the GuanDan Game through Reinforcement Learning [95.90682269990705]
我々は、GuanDanという、非常に複雑で人気のあるカードゲームのためのAIプログラムを開発した。
私たちはまず、DanZeroという名のAIプログラムをこのゲームのために提案しました。
AIの能力をさらに強化するために、政策に基づく強化学習アルゴリズムをGuanDanに適用する。
論文 参考訳(メタデータ) (2023-12-05T08:07:32Z) - Explaining How a Neural Network Play the Go Game and Let People Learn [26.192580802652742]
AIモデルは、Goのゲームで人間のプレイヤーを追い越した。
AIモデルは、人間のプレイヤーを超えて、Goゲームに関する新しい知識をエンコードしたと広く信じられている。
論文 参考訳(メタデータ) (2023-10-15T13:57:50Z) - Tachikuma: Understading Complex Interactions with Multi-Character and
Novel Objects by Large Language Models [67.20964015591262]
我々は,複数文字と新しいオブジェクトベースインタラクション推定タスクとサポートデータセットからなる,立久間というベンチマークを導入する。
このデータセットは、ゲームプレイ中のリアルタイム通信からログデータをキャプチャし、多様な、接地された複雑なインタラクションを提供して、さらなる探索を行う。
本稿では,対話理解の強化に有効であることを示すため,簡単なプロンプトベースラインを提案し,その性能評価を行う。
論文 参考訳(メタデータ) (2023-07-24T07:40:59Z) - Designing Mixed-Initiative Video Games [0.0]
スネークストーリー(Snake Story)は、ゲームのように「スネーク」をプレイすることで、プレイヤーがAI生成したテキストを選択してヘビのストーリーを書くことができる混合開始型ゲームである。
ゲームコンポーネントを設計したインタフェースで使用せずにプレイヤとAIのインタラクションのダイナミクスを調べるために,制御された実験を行った。
論文 参考訳(メタデータ) (2023-07-08T01:45:25Z) - Generative Personas That Behave and Experience Like Humans [3.611888922173257]
生成AIエージェントは、ルール、報酬、または人間のデモンストレーションとして表される特定の演奏行動の模倣を試みる。
我々は、行動手続き的ペルソナの概念をプレイヤー体験に適応させるよう拡張し、プレイヤーが人間のように行動し、経験できる生成エージェントを調べる。
その結果, 生成したエージェントは, 模倣を意図した人物のプレイスタイルや経験的反応を呈することが示唆された。
論文 参考訳(メタデータ) (2022-08-26T12:04:53Z) - WinoGAViL: Gamified Association Benchmark to Challenge
Vision-and-Language Models [91.92346150646007]
本研究では,視覚・言語関係を収集するオンラインゲームであるWinoGAViLを紹介する。
私たちはこのゲームを使って3.5Kのインスタンスを収集し、それらが人間には直感的だが最先端のAIモデルには挑戦的であることを発見した。
我々の分析とプレイヤーからのフィードバックは、収集された協会が多様な推論スキルを必要とすることを示している。
論文 参考訳(メタデータ) (2022-07-25T23:57:44Z) - Player-AI Interaction: What Neural Network Games Reveal About AI as Play [14.63311356668699]
本稿では,人間がAIとどのように相互作用するかを学習し,実験する上で,ゲームは理想的な領域である,と論じる。
ニューラルネットワークゲームの体系的な調査を通じて、優勢な相互作用のメタファーとAIの相互作用パターンを特定した。
我々の研究は、ゲームとUXデザイナが人間とAIの相互作用の学習曲線を構築するためのフローを考えるべきであることを示唆している。
論文 参考訳(メタデータ) (2021-01-15T17:07:03Z) - Teach me to play, gamer! Imitative learning in computer games via
linguistic description of complex phenomena and decision tree [55.41644538483948]
本稿では,複雑な現象の言語記述に基づく模倣による新しい機械学習モデルを提案する。
この手法は,ゲーム開発における知的エージェントの動作を設計し,実装するための優れた代替手段となる。
論文 参考訳(メタデータ) (2021-01-06T21:14:10Z) - Explainability via Responsibility [0.9645196221785693]
本稿では,特定のトレーニングインスタンスをユーザに提供する,説明可能な人工知能へのアプローチを提案する。
我々は、AIエージェントの動作の説明を人間のユーザに提供する能力を近似することで、このアプローチを評価する。
論文 参考訳(メタデータ) (2020-10-04T20:41:03Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
本研究は,テキストベースのコンピュータゲームにおいて,最先端の性能を発揮できる探索・模倣学習型エージェントを提案する。
テキストベースのコンピュータゲームは、自然言語でプレイヤーの世界を記述し、プレイヤーがテキストを使ってゲームと対話することを期待する。
これらのゲームは、言語理解、問題解決、および人工エージェントによる言語生成のためのテストベッドと見なすことができるため、興味がある。
論文 参考訳(メタデータ) (2020-01-24T03:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。