Semiparametric Inference For Causal Effects In Graphical Models With
Hidden Variables
- URL: http://arxiv.org/abs/2003.12659v3
- Date: Thu, 13 Oct 2022 23:59:34 GMT
- Title: Semiparametric Inference For Causal Effects In Graphical Models With
Hidden Variables
- Authors: Rohit Bhattacharya, Razieh Nabi, Ilya Shpitser
- Abstract summary: Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs is well studied.
corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output.
We bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome.
- Score: 13.299431908881425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identification theory for causal effects in causal models associated with
hidden variable directed acyclic graphs (DAGs) is well studied. However, the
corresponding algorithms are underused due to the complexity of estimating the
identifying functionals they output. In this work, we bridge the gap between
identification and estimation of population-level causal effects involving a
single treatment and a single outcome. We derive influence function based
estimators that exhibit double robustness for the identified effects in a large
class of hidden variable DAGs where the treatment satisfies a simple graphical
criterion; this class includes models yielding the adjustment and front-door
functionals as special cases. We also provide necessary and sufficient
conditions under which the statistical model of a hidden variable DAG is
nonparametrically saturated and implies no equality constraints on the observed
data distribution. Further, we derive an important class of hidden variable
DAGs that imply observed data distributions observationally equivalent (up to
equality constraints) to fully observed DAGs. In these classes of DAGs, we
derive estimators that achieve the semiparametric efficiency bounds for the
target of interest where the treatment satisfies our graphical criterion.
Finally, we provide a sound and complete identification algorithm that directly
yields a weight based estimation strategy for any identifiable effect in hidden
variable causal models.
Related papers
- Average Causal Effect Estimation in DAGs with Hidden Variables: Extensions of Back-Door and Front-Door Criteria [3.0232957374216953]
We develop one-step corrected plug-in and targeted minimum loss-based estimators of causal effects for a class of directed aparametric graphs (DAGs) with hidden variables.
We leverage machine learning to minimize modeling assumptions while ensuring key statistical properties such as linear primality, double robustness, efficiency, and staying within the bounds of the target parameter space.
arXiv Detail & Related papers (2024-09-06T01:07:29Z) - Causal Effect Identification in LiNGAM Models with Latent Confounders [20.751445296400316]
We study the generic identifiability of causal effects in linear non-Gaussian acyclic models (LiNGAM) with latent variables.
We provide a complete graphical characterization of the identifiable direct or total causal effects among observed variables.
arXiv Detail & Related papers (2024-06-04T07:30:27Z) - General Identifiability and Achievability for Causal Representation
Learning [33.80247458590611]
The paper establishes identifiability and achievability results using two hard uncoupled interventions per node in the latent causal graph.
For identifiability, the paper establishes that perfect recovery of the latent causal model and variables is guaranteed under uncoupled interventions.
The analysis, additionally, recovers the identifiability result for two hard coupled interventions, that is when metadata about the pair of environments that have the same node intervened is known.
arXiv Detail & Related papers (2023-10-24T01:47:44Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
This paper studies the causal representation learning problem when latent causal variables are observed indirectly.
The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables.
arXiv Detail & Related papers (2023-01-19T18:39:48Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
We introduce a new type of graphical model called cluster causal diagrams (for short, C-DAGs)
C-DAGs allow for the partial specification of relationships among variables based on limited prior knowledge.
We develop the foundations and machinery for valid causal inferences over C-DAGs.
arXiv Detail & Related papers (2022-02-22T21:27:31Z) - BCDAG: An R package for Bayesian structure and Causal learning of
Gaussian DAGs [77.34726150561087]
We introduce the R package for causal discovery and causal effect estimation from observational data.
Our implementation scales efficiently with the number of observations and, whenever the DAGs are sufficiently sparse, the number of variables in the dataset.
We then illustrate the main functions and algorithms on both real and simulated datasets.
arXiv Detail & Related papers (2022-01-28T09:30:32Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - Identification of Latent Variables From Graphical Model Residuals [0.0]
We present a novel method to control for the latent space when estimating a DAG by iteratively deriving proxies for the latent space from the residuals of the inferred model.
We show that any improvement of prediction of an outcome is intrinsically capped and cannot rise beyond a certain limit as compared to the confounded model.
arXiv Detail & Related papers (2021-01-07T02:28:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.