論文の概要: Architectural Patterns for the Design of Federated Learning Systems
- arxiv url: http://arxiv.org/abs/2101.02373v1
- Date: Thu, 7 Jan 2021 05:11:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 13:25:05.043415
- Title: Architectural Patterns for the Design of Federated Learning Systems
- Title(参考訳): フェデレーション学習システム設計のためのアーキテクチャパターン
- Authors: Sin Kit Lo, Qinghua Lu, Liming Zhu, Hye-young Paik, Xiwei Xu, Chen
Wang
- Abstract要約: 機械学習におけるデータの空腹とプライバシの課題に取り組むため、フェデレーション学習は学界や業界から急速に関心を集めている。
本稿では,連合型学習システムの設計課題に対処するアーキテクチャパターンの集合について述べる。
- 参考スコア(独自算出の注目度): 12.330671239159102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning has received fast-growing interests from academia and
industry to tackle the challenges of data hungriness and privacy in machine
learning. A federated learning system can be viewed as a large-scale
distributed system with different components and stakeholders as numerous
client devices participate in federated learning. Designing a federated
learning system requires software system design thinking apart from machine
learning knowledge. Although much effort has been put into federated learning
from the machine learning technique aspects, the software architecture design
concerns in building federated learning systems have been largely ignored.
Therefore, in this paper, we present a collection of architectural patterns to
deal with the design challenges of federated learning systems. Architectural
patterns present reusable solutions to a commonly occurring problem within a
given context during software architecture design. The presented patterns are
based on the results of a systematic literature review and include three client
management patterns, four model management patterns, three model training
patterns, and four model aggregation patterns. The patterns are associated to
particular state transitions in a federated learning model lifecycle, serving
as a guidance for effective use of the patterns in the design of federated
learning systems.
- Abstract(参考訳): 機械学習におけるデータの空腹とプライバシの課題に取り組むため、フェデレーション学習は学界や業界から急速に関心を集めている。
フェデレーション学習システムは、多数のクライアントデバイスがフェデレーション学習に参加しているため、さまざまなコンポーネントとステークホルダを持つ大規模分散システムと見なすことができる。
連合学習システムの設計には、機械学習知識とは別に考えるソフトウェアシステム設計が必要である。
機械学習技術の側面からフェデレーション学習に多くの努力がなされているが、フェデレーション学習システムを構築する際のソフトウェアアーキテクチャ設計の問題はほとんど無視されている。
そこで本稿では,連合型学習システムの設計課題に対処するアーキテクチャパターンの集合について述べる。
アーキテクチャパターンは、ソフトウェアアーキテクチャ設計中に与えられたコンテキスト内で一般的に発生する問題に対する再利用可能なソリューションを示す。
提示されたパターンは、体系的な文献レビューの結果に基づき、3つのクライアント管理パターン、4つのモデル管理パターン、3つのモデルトレーニングパターン、4つのモデル集約パターンを含む。
これらのパターンは、フェデレーション学習モデルライフサイクルにおける特定の状態遷移に関連付けられ、フェデレーション学習システムの設計においてパターンを効果的に利用するためのガイダンスとなる。
関連論文リスト
- Deep Learning and Machine Learning: Advancing Big Data Analytics and Management with Design Patterns [17.624263707781655]
この本は、ビッグデータ分析システムの開発、メンテナンス、スケーラビリティを最適化するための、古典的なソフトウェアエンジニアリングパターンの適用について説明している。
モデル管理、デプロイメント戦略、チームコラボレーションへの影響について、シングルトン、ファクトリ、オブザーバ、ストラテジーといった主要なデザインパターンを分析します。
このボリュームは、開発者、研究者、エンジニアにとって、マシンラーニングとソフトウェア設計の両方における技術的専門知識を強化するために不可欠なリソースである。
論文 参考訳(メタデータ) (2024-10-04T02:50:58Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - A Compositional Approach to Creating Architecture Frameworks with an
Application to Distributed AI Systems [16.690434072032176]
構成的思考が複雑なシステムのためのアーキテクチャフレームワークの作成と管理のルールをいかに提供できるかを示す。
論文の目的は、AIシステム特有の視点やアーキテクチャモデルを提供することではなく、既存の、または新しく作成された視点で一貫したフレームワークを構築する方法についてのガイドラインを提供することである。
論文 参考訳(メタデータ) (2022-12-27T18:05:02Z) - Decision Models for Selecting Federated Learning Architecture Patterns [7.468413169676602]
フェデレートされた機械学習アーキテクチャ設計のためのパターン選択のための一連の決定モデルを提案する。
各決定モデルは、フェデレートされた機械学習システムの機能的および非機能的要件を一連のパターンにマッピングする。
論文 参考訳(メタデータ) (2022-04-28T05:07:26Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
本稿では,多様なMLアルゴリズムの統一的な理解を提供する学習目的の標準化された方程式を提案する。
また、新しいMLソリューションのメカニック設計のガイダンスも提供し、すべての経験を持つパノラマ学習に向けた有望な手段として機能する。
論文 参考訳(メタデータ) (2021-08-17T17:44:38Z) - FLRA: A Reference Architecture for Federated Learning Systems [8.180947044673639]
フェデレートラーニング(Federated Learning)は、複数のデバイスが、クライアントのローカルデータを共有せずに、モデルをローカルにトレーニングし、グローバルモデルを定式化する、新たな機械学習パラダイムである。
我々は,フェデレート学習システムのための参照アーキテクチャであるFLRAを提案し,フェデレーション学習ベースのソリューションのためのテンプレート設計を提供する。
論文 参考訳(メタデータ) (2021-06-22T06:59:19Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - A Systematic Literature Review on Federated Machine Learning: From A
Software Engineering Perspective [9.315446698757768]
フェデレートラーニング(Federated Learning)は、クライアントがローカルモデルをトレーニングし、ローカルモデル更新に基づいてグローバルモデルを定式化する、新たな機械学習パラダイムである。
ソフトウェア工学の観点から,231の初等研究に基づいて,系統的な文献レビューを行う。
データ合成は, 背景理解, 要件分析, アーキテクチャ設計, 実装, 評価を含む, 統合学習システムのライフサイクルをカバーする。
論文 参考訳(メタデータ) (2020-07-22T11:59:54Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。