論文の概要: Principles and Components of Federated Learning Architectures
- arxiv url: http://arxiv.org/abs/2502.05273v2
- Date: Sun, 20 Apr 2025 17:59:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-22 15:07:02.185448
- Title: Principles and Components of Federated Learning Architectures
- Title(参考訳): フェデレーションラーニングアーキテクチャの原理と構成要素
- Authors: MD Abdullah Al Nasim, Fatema Tuj Johura Soshi, Parag Biswas, A. S. M Anas Ferdous, Abdur Rashid, Angona Biswas, Kishor Datta Gupta,
- Abstract要約: Federated Learning(FL)は、中央サーバのオーケストレーションの下で複数のクライアントが協力してモデルを構築する機械学習フレームワークである。
この記事では、フェデレートされた学習アーキテクチャに見られる固有の概念と特徴について詳しく説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Federated Learning (FL) is a machine learning framework where multiple clients, from mobiles to enterprises, collaboratively construct a model under the orchestration of a central server but still retain the decentralized nature of the training data. This decentralized training of models offers numerous advantages, including cost savings, enhanced privacy, improved security, and compliance with legal requirements. However, for all its apparent advantages, FL is not immune to the limitations of conventional machine learning methodologies. This article provides an elaborate explanation of the inherent concepts and features found within federated learning architecture, addressing five key domains: system heterogeneity, data partitioning, machine learning models, communication protocols, and privacy techniques. This article also highlights the limitations in this domain and proposes avenues for future work. Besides, we provide a set of architectural patterns for federated learning systems, which are derived from the systematic survey of the literature. The main elements of FL, the fundamentals of Federated Learning, and a few architectural specifics will all be better understood with the aid of this research.
- Abstract(参考訳): Federated Learning(FL)は、モバイルから企業まで、複数のクライアントが、中央サーバのオーケストレーションの下で協調的にモデルを構築しながら、トレーニングデータの分散性を維持する、機械学習フレームワークである。
モデルの分散トレーニングは、コスト削減、プライバシーの強化、セキュリティの改善、法的要件の遵守など、数多くのメリットを提供する。
しかし、その明らかな利点は、FLは従来の機械学習手法の限界に免疫がないことである。
この記事では、システム不均一性、データパーティショニング、機械学習モデル、通信プロトコル、プライバシ技術という5つの重要なドメインに対処する、フェデレーション付き学習アーキテクチャで見られる固有の概念と機能について、詳しく説明します。
この記事ではまた、このドメインの制限を強調し、今後の作業への道を提案します。
さらに,本論文の体系的な調査から得られた,連合学習システムのための一連のアーキテクチャパターンを提供する。
FLの主な要素、フェデレートラーニングの基礎、そしていくつかのアーキテクチャの詳細は、すべてこの研究の助けを借りてよりよく理解されるでしょう。
関連論文リスト
- Federated Learning: A Survey on Privacy-Preserving Collaborative Intelligence [0.09208007322096533]
フェデレートラーニング(FL)は、分散機械学習の分野における変革的パラダイムとして登場した。
この調査は、フェデレートラーニングの簡潔かつ包括的概要を提供する。
論文 参考訳(メタデータ) (2025-04-24T16:10:29Z) - Federated Learning in Practice: Reflections and Projections [17.445826363802997]
Federated Learning(FL)は、複数のエンティティがローカルデータを交換することなく、共同で共有モデルを学ぶことができる機械学習技術である。
Google、Apple、Metaといった組織によるプロダクションシステムは、FLの現実的な適用性を実証しています。
我々は、厳密な定義よりもプライバシー原則を優先する再定義されたFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-11T15:10:38Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
フェデレートラーニング(FL)は、分散とプライバシ保護の方法で機械学習モデルをトレーニングするための有望なパラダイムとして登場した。
モデルに使用される手法の選択は、フェデレーション学習システムの性能、収束速度、通信効率、プライバシー保証において重要な役割を果たす。
本研究は,各手法のメリットとデメリットを慎重に比較,分類,記述し,さまざまなFLシナリオに適用性について検討する。
論文 参考訳(メタデータ) (2023-10-31T23:26:58Z) - Handling Data Heterogeneity via Architectural Design for Federated
Visual Recognition [16.50490537786593]
4つのFLデータセットを用いて、5つの異なるアーキテクチャファミリからの19の視覚認識モデルについて検討する。
本研究は,現実的なシナリオにおけるコンピュータビジョンタスクにおけるアーキテクチャ設計の重要性を強調した。
論文 参考訳(メタデータ) (2023-10-23T17:59:16Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
リレーショナルデータ上での深層学習(DL)モデルの実現は、様々な商業分野や科学分野において重要な要件となっている。
最先端のDL中心アーキテクチャは、DL計算を専用のDLフレームワークにオフロードします。
UDF中心アーキテクチャの可能性は、リレーショナルデータベース管理システム(RDBMS)内の1つ以上のテンソル計算をユーザ定義関数(UDF)にカプセル化する。
論文 参考訳(メタデータ) (2023-10-07T06:01:35Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
論文 参考訳(メタデータ) (2023-05-29T22:51:40Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Introducing Federated Learning into Internet of Things ecosystems --
preliminary considerations [0.31402652384742363]
分散環境におけるモデルのトレーニングを容易にするために,フェデレートラーニング(FL)を提案する。
これは(ローカル)データのプライバシ保護をサポートし、モデルのトレーニングにローカルリソースを使用する。
論文 参考訳(メタデータ) (2022-07-15T18:48:57Z) - FLRA: A Reference Architecture for Federated Learning Systems [8.180947044673639]
フェデレートラーニング(Federated Learning)は、複数のデバイスが、クライアントのローカルデータを共有せずに、モデルをローカルにトレーニングし、グローバルモデルを定式化する、新たな機械学習パラダイムである。
我々は,フェデレート学習システムのための参照アーキテクチャであるFLRAを提案し,フェデレーション学習ベースのソリューションのためのテンプレート設計を提供する。
論文 参考訳(メタデータ) (2021-06-22T06:59:19Z) - From Distributed Machine Learning to Federated Learning: A Survey [49.7569746460225]
分散学習は、分散データとコンピューティングリソースを利用するための効率的なアプローチとして現れる。
本論文では,連合学習システムの機能構造と関連手法の分類法を提案する。
本稿では,flシステムの分散トレーニング,データ通信,セキュリティについて述べる。
論文 参考訳(メタデータ) (2021-04-29T14:15:11Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - Architectural Patterns for the Design of Federated Learning Systems [12.330671239159102]
機械学習におけるデータの空腹とプライバシの課題に取り組むため、フェデレーション学習は学界や業界から急速に関心を集めている。
本稿では,連合型学習システムの設計課題に対処するアーキテクチャパターンの集合について述べる。
論文 参考訳(メタデータ) (2021-01-07T05:11:09Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - IBM Federated Learning: an Enterprise Framework White Paper V0.1 [28.21579297214125]
Federated Learning(FL)は、トレーニングデータを単一の場所で集中化せずに機械学習を実行するアプローチである。
このフレームワークは、最も一般的な機械学習ライブラリに対する従来のアプローチと同様に、Deep Neural Networksにも適用される。
論文 参考訳(メタデータ) (2020-07-22T05:32:00Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。