Boundary-Aware Geometric Encoding for Semantic Segmentation of Point
Clouds
- URL: http://arxiv.org/abs/2101.02381v1
- Date: Thu, 7 Jan 2021 05:38:19 GMT
- Title: Boundary-Aware Geometric Encoding for Semantic Segmentation of Point
Clouds
- Authors: Jingyu Gong, Jiachen Xu, Xin Tan, Jie Zhou, Yanyun Qu, Yuan Xie,
Lizhuang Ma
- Abstract summary: Boundary information plays a significant role in 2D image segmentation, while usually being ignored in 3D point cloud segmentation.
We propose a Boundary Prediction Module (BPM) to predict boundary points.
Based on the predicted boundary, a boundary-aware Geometric.
GEM is designed to encode geometric information and aggregate features with discrimination in a neighborhood.
- Score: 45.270215729464056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Boundary information plays a significant role in 2D image segmentation, while
usually being ignored in 3D point cloud segmentation where ambiguous features
might be generated in feature extraction, leading to misclassification in the
transition area between two objects. In this paper, firstly, we propose a
Boundary Prediction Module (BPM) to predict boundary points. Based on the
predicted boundary, a boundary-aware Geometric Encoding Module (GEM) is
designed to encode geometric information and aggregate features with
discrimination in a neighborhood, so that the local features belonging to
different categories will not be polluted by each other. To provide extra
geometric information for boundary-aware GEM, we also propose a light-weight
Geometric Convolution Operation (GCO), making the extracted features more
distinguishing. Built upon the boundary-aware GEM, we build our network and
test it on benchmarks like ScanNet v2, S3DIS. Results show our methods can
significantly improve the baseline and achieve state-of-the-art performance.
Code is available at https://github.com/JchenXu/BoundaryAwareGEM.
Related papers
- Geometrically-driven Aggregation for Zero-shot 3D Point Cloud Understanding [11.416392706435415]
Zero-shot 3D point cloud understanding can be achieved via 2D Vision-Language Models (VLMs)
Existing strategies directly map Vision-Language Models from 2D pixels of rendered or captured views to 3D points, overlooking the inherent and expressible point cloud geometric structure.
We introduce the first training-free aggregation technique that leverages the point cloud's 3D geometric structure to improve the quality of the transferred Vision-Language Models.
arXiv Detail & Related papers (2023-12-04T12:30:07Z) - Push-the-Boundary: Boundary-aware Feature Propagation for Semantic
Segmentation of 3D Point Clouds [0.5249805590164901]
We propose a boundary-aware feature propagation mechanism to improve semantic segmentation near object boundaries.
With one shared encoder, our network outputs (i) boundary localization, (ii) prediction of directions pointing to the object's interior, and (iii) semantic segmentation, in three parallel streams.
Our proposed approach yields consistent improvements by reducing boundary errors.
arXiv Detail & Related papers (2022-12-23T15:42:01Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Geometry-Aware Network for Domain Adaptive Semantic Segmentation [64.00345743710653]
We propose a novel Geometry-Aware Network for Domain Adaptation (GANDA) to shrink the domain gaps.
We exploit 3D topology on the point clouds generated from RGB-D images for coordinate-color disentanglement and pseudo-labels refinement in the target domain.
Our model outperforms state-of-the-arts on GTA5->Cityscapes and SYNTHIA->Cityscapes.
arXiv Detail & Related papers (2022-12-02T00:48:44Z) - GeoSegNet: Point Cloud Semantic Segmentation via Geometric
Encoder-Decoder Modeling [39.35429984469557]
We present a robust semantic segmentation network dubbed GeoSegNet.
Our GeoSegNet consists of a multi-geometry based encoder and a boundary-guided decoder.
Experiments show obvious improvements of our method over its competitors in terms of the overall segmentation accuracy and object boundary clearness.
arXiv Detail & Related papers (2022-07-14T09:24:05Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
We propose SemAffiNet for point cloud semantic segmentation.
We conduct extensive experiments on the ScanNetV2 and NYUv2 datasets.
arXiv Detail & Related papers (2022-05-26T17:00:23Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
We propose Geometry-Disentangled Attention Network (GDANet) for 3D image processing.
GDANet disentangles point clouds into contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components.
Experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters.
arXiv Detail & Related papers (2020-12-20T13:35:00Z) - Saliency Enhancement using Gradient Domain Edges Merging [65.90255950853674]
We develop a method to merge the edges with the saliency maps to improve the performance of the saliency.
This leads to our proposed saliency enhancement using edges (SEE) with an average improvement of at least 3.4 times higher on the DUT-OMRON dataset.
The SEE algorithm is split into 2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.
arXiv Detail & Related papers (2020-02-11T14:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.