Associated Spatio-Temporal Capsule Network for Gait Recognition
- URL: http://arxiv.org/abs/2101.02458v1
- Date: Thu, 7 Jan 2021 09:55:17 GMT
- Title: Associated Spatio-Temporal Capsule Network for Gait Recognition
- Authors: Aite Zhao, Junyu Dong, Jianbo Li, Lin Qi, Huiyu Zhou
- Abstract summary: State-of-the-art approaches rely on analysis of temporal or spatial characteristics of gait.
ASTCapsNet trained on multi-sensor datasets to analyze multimodal information for gait recognition.
- Score: 36.85667679699001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is a challenging task to identify a person based on her/his gait patterns.
State-of-the-art approaches rely on the analysis of temporal or spatial
characteristics of gait, and gait recognition is usually performed on single
modality data (such as images, skeleton joint coordinates, or force signals).
Evidence has shown that using multi-modality data is more conducive to gait
research. Therefore, we here establish an automated learning system, with an
associated spatio-temporal capsule network (ASTCapsNet) trained on multi-sensor
datasets, to analyze multimodal information for gait recognition. Specifically,
we first design a low-level feature extractor and a high-level feature
extractor for spatio-temporal feature extraction of gait with a novel recurrent
memory unit and a relationship layer. Subsequently, a Bayesian model is
employed for the decision-making of class labels. Extensive experiments on
several public datasets (normal and abnormal gait) validate the effectiveness
of the proposed ASTCapsNet, compared against several state-of-the-art methods.
Related papers
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
We build on the recently introduced 2D-Attention and reformulate the attention learning methodology.
We propose a joint feature-temporal attention mechanism that learns a joint 2D attention mask highlighting relevant information.
arXiv Detail & Related papers (2022-01-26T17:54:14Z) - PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback [3.347485580830609]
PSEUDo is an adaptive feature learning technique for exploring visual patterns in multi-track sequential data.
Our algorithm features sub-linear training and inference time.
We demonstrate superiority of PSEUDo in terms of efficiency, accuracy, and steerability.
arXiv Detail & Related papers (2021-04-30T13:00:44Z) - Sequential convolutional network for behavioral pattern extraction in
gait recognition [0.7874708385247353]
We propose a sequential convolutional network (SCN) to learn the walking pattern of individuals.
In SCN, behavioral information extractors (BIE) are constructed to comprehend intermediate feature maps in time series.
A multi-frame aggregator in SCN performs feature integration on a sequence whose length is uncertain, via a mobile 3D convolutional layer.
arXiv Detail & Related papers (2021-04-23T08:44:10Z) - Temporal Memory Relation Network for Workflow Recognition from Surgical
Video [53.20825496640025]
We propose a novel end-to-end temporal memory relation network (TMNet) for relating long-range and multi-scale temporal patterns.
We have extensively validated our approach on two benchmark surgical video datasets.
arXiv Detail & Related papers (2021-03-30T13:20:26Z) - SelfGait: A Spatiotemporal Representation Learning Method for
Self-supervised Gait Recognition [24.156710529672775]
Gait recognition plays a vital role in human identification since gait is a unique biometric feature that can be perceived at a distance.
Existing gait recognition methods can learn gait features from gait sequences in different ways, but the performance of gait recognition suffers from labeled data.
We propose a self-supervised gait recognition method, termed SelfGait, which takes advantage of the massive, diverse, unlabeled gait data as a pre-training process.
arXiv Detail & Related papers (2021-03-27T05:15:39Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
This paper proposes a Transferable Neighborhood Discovery (TraND) framework to bridge the domain gap for unsupervised cross-domain gait recognition.
We design an end-to-end trainable approach to automatically discover the confident neighborhoods of unlabeled samples in the latent space.
Our method achieves state-of-the-art results on two public datasets, i.e., CASIA-B and OU-LP.
arXiv Detail & Related papers (2021-02-09T03:07:07Z) - A Tree-structure Convolutional Neural Network for Temporal Features
Exaction on Sensor-based Multi-resident Activity Recognition [4.619245607612873]
We propose an end-to-end Tree-Structure Convolutional neural network based framework for Multi-Resident Activity Recognition (TSC-MRAR)
First, we treat each sample as an event and obtain the current event embedding through the previous sensor readings in the sliding window.
Then, in order to automatically generate the temporal features, a tree-structure network is designed to derive the temporal dependence of nearby readings.
arXiv Detail & Related papers (2020-11-05T14:31:00Z) - Gait Recognition using Multi-Scale Partial Representation Transformation
with Capsules [22.99694601595627]
We propose a novel deep network, learning to transfer multi-scale partial gait representations using capsules.
Our network first obtains multi-scale partial representations using a state-of-the-art deep partial feature extractor.
It then recurrently learns the correlations and co-occurrences of the patterns among the partial features in forward and backward directions.
arXiv Detail & Related papers (2020-10-18T19:47:38Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.