論文の概要: Symmetry-adapted graph neural networks for constructing molecular
dynamics force fields
- arxiv url: http://arxiv.org/abs/2101.02930v1
- Date: Fri, 8 Jan 2021 09:32:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 04:59:26.570993
- Title: Symmetry-adapted graph neural networks for constructing molecular
dynamics force fields
- Title(参考訳): 分子動力学力場構築のための対称性適応グラフニューラルネットワーク
- Authors: Zun Wang, Chong Wang, Sibo Zhao, Shiqiao Du, Yong Xu, Bing-Lin Gu,
Wenhui Duan
- Abstract要約: 分子動力学シミュレーションのための力場を自動構築する対称性適応グラフニューラルネットワークフレームワークを開発した。
MDGNNは古典的分子動力学と第一原理分子動力学の両方の結果を正確に再現する。
- 参考スコア(独自算出の注目度): 10.820190246285122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular dynamics is a powerful simulation tool to explore material
properties. Most of the realistic material systems are too large to be
simulated with first-principles molecular dynamics. Classical molecular
dynamics has lower computational cost but requires accurate force fields to
achieve chemical accuracy. In this work, we develop a symmetry-adapted graph
neural networks framework, named molecular dynamics graph neural networks
(MDGNN), to construct force fields automatically for molecular dynamics
simulations for both molecules and crystals. This architecture consistently
preserves the translation, rotation and permutation invariance in the
simulations. We propose a new feature engineering method including higher order
contributions and show that MDGNN accurately reproduces the results of both
classical and first-principles molecular dynamics. We also demonstrate that
force fields constructed by the model has good transferability. Therefore,
MDGNN provides an efficient and promising option for molecular dynamics
simulations of large scale systems with high accuracy.
- Abstract(参考訳): 分子動力学は材料特性を探索する強力なシミュレーションツールである。
ほとんどの現実的な物質系は、第一原理分子動力学でシミュレートするには大きすぎる。
古典的分子動力学は計算コストは低いが、化学精度を達成するためには正確な力場を必要とする。
本研究では,分子と結晶の分子動力学シミュレーションのための力場を自動構築するために,分子動力学グラフニューラルネットワーク(MDGNN)と呼ばれる対称性適応グラフニューラルネットワークフレームワークを開発した。
このアーキテクチャは、シミュレーションにおける変換、回転、置換不変性を一貫して保持する。
高次寄与を含む新しい機能工学法を提案し,mdgnnが古典的および第一原理的分子動力学の結果を正確に再現することを示す。
また,モデルによって構築された力場は移動性が良好であることを実証する。
そのため、MDGNNは大規模システムの分子動力学シミュレーションを高精度に行うための効率的かつ有望な選択肢を提供する。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Two for One: Diffusion Models and Force Fields for Coarse-Grained
Molecular Dynamics [15.660348943139711]
我々は、スコアベース生成モデル、力場、分子動力学の接続を利用して、トレーニング中に力入力を必要とせずにCG力場を学習する。
従来よりも大幅に簡易化されたトレーニングセットアップを持つ一方で,本手法がいくつかの小~中規模のタンパク質シミュレーションの性能向上につながることを実証した。
論文 参考訳(メタデータ) (2023-02-01T17:09:46Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
本稿では、幾何学的特徴をエレガントに抽出し、分子構造を効率的にモデル化する同変幾何拡張グラフニューラルネットワークViSNetを提案する。
提案するViSNetは,MD17,MD17,MD22を含む複数のMDベンチマークにおける最先端の手法よりも優れ,QM9およびMolecule3Dデータセット上での優れた化学的特性予測を実現する。
論文 参考訳(メタデータ) (2022-10-29T07:12:46Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - NNP/MM: Accelerating molecular dynamics simulations with machine
learning potentials and molecular mechanic [38.50309739333058]
ニューラルネットワーク電位(NNP)と分子力学(MM)を組み合わせたハイブリッド手法(NNP/MM)の最適化実装を提案する。
このアプローチは、小さな分子のようなシステムの一部をNNPを用いてモデル化し、残りのシステムにMMを用いて効率を向上する。
これにより, シミュレーション速度を5倍に向上し, 複合体毎の1マイクロ秒の同時サンプリングを実現し, この種のシミュレーションで報告された最長のシミュレーションとなった。
論文 参考訳(メタデータ) (2022-01-20T10:57:20Z) - Super-resolution in Molecular Dynamics Trajectory Reconstruction with
Bi-Directional Neural Networks [0.0]
機械学習(ML)の異なる手法を探索し、後処理のステップで分子動力学軌道の解像度をオンデマンドで向上する。
サーモスタット軌道の局所的時間対称性を利用して、長距離相関を学習し、分子の複雑さにまたがる雑音のダイナミックスに対して高いロバスト性を示すことができる。
論文 参考訳(メタデータ) (2022-01-02T23:00:30Z) - Coarse Graining Molecular Dynamics with Graph Neural Networks [3.0279361008741827]
本稿では,粗大な力場の機械学習のためのハイブリッドアーキテクチャを導入し,サブネットワークを介してそれぞれの特徴を学習する。
この枠組みは, 生体分子系における熱力学の再現に有効であることを示す。
論文 参考訳(メタデータ) (2020-07-22T13:20:08Z) - Molecular Latent Space Simulators [8.274472944075713]
本研究では、連続的な全原子シミュレーション軌道の運動モデルを学ぶための潜在空間シミュレータ(LSS)を提案する。
Trpタンパク質を応用して, 新規な超長尺合成折りたたみ路を創出する手法を実証する。
論文 参考訳(メタデータ) (2020-07-01T20:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。