論文の概要: Two for One: Diffusion Models and Force Fields for Coarse-Grained
Molecular Dynamics
- arxiv url: http://arxiv.org/abs/2302.00600v3
- Date: Fri, 22 Sep 2023 11:38:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 19:25:02.180308
- Title: Two for One: Diffusion Models and Force Fields for Coarse-Grained
Molecular Dynamics
- Title(参考訳): 2対1:拡散モデルと粗粒分子動力学のための力場
- Authors: Marloes Arts, Victor Garcia Satorras, Chin-Wei Huang, Daniel Zuegner,
Marco Federici, Cecilia Clementi, Frank No\'e, Robert Pinsler, Rianne van den
Berg
- Abstract要約: 我々は、スコアベース生成モデル、力場、分子動力学の接続を利用して、トレーニング中に力入力を必要とせずにCG力場を学習する。
従来よりも大幅に簡易化されたトレーニングセットアップを持つ一方で,本手法がいくつかの小~中規模のタンパク質シミュレーションの性能向上につながることを実証した。
- 参考スコア(独自算出の注目度): 15.660348943139711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coarse-grained (CG) molecular dynamics enables the study of biological
processes at temporal and spatial scales that would be intractable at an
atomistic resolution. However, accurately learning a CG force field remains a
challenge. In this work, we leverage connections between score-based generative
models, force fields and molecular dynamics to learn a CG force field without
requiring any force inputs during training. Specifically, we train a diffusion
generative model on protein structures from molecular dynamics simulations, and
we show that its score function approximates a force field that can directly be
used to simulate CG molecular dynamics. While having a vastly simplified
training setup compared to previous work, we demonstrate that our approach
leads to improved performance across several small- to medium-sized protein
simulations, reproducing the CG equilibrium distribution, and preserving
dynamics of all-atom simulations such as protein folding events.
- Abstract(参考訳): 粗粒分子動力学(CG)は、時間的および空間的なスケールでの生物学的過程の研究を可能にする。
しかし,cg力場を正確に学習することは課題である。
本研究では, スコアベース生成モデル, 力場, 分子動力学の接続を利用して, トレーニング中の力入力を必要とせずにCG力場を学習する。
具体的には、分子動力学シミュレーションからタンパク質構造の拡散生成モデルを訓練し、そのスコア関数がCG分子動力学をシミュレートするために直接使用できる力場に近似することを示した。
本研究は, 従来の研究に比べて極めて簡易なトレーニング設定を持つ一方で, 小規模から中規模のタンパク質シミュレーションにおける性能向上, CG平衡分布の再現, タンパク質折り畳み現象などの全原子シミュレーションのダイナミクスの保存等を図っている。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Navigating protein landscapes with a machine-learned transferable
coarse-grained model [29.252004942896875]
同様の予測性能を持つ粗粒度(CG)モデルは、長年にわたる課題である。
ケミカルトランスポータビリティを持つボトムアップCG力場を開発し,新しい配列の分子動力学に利用することができる。
本モデルでは, 折り畳み構造, 中間体, メタスタブル折り畳み型および折り畳み型流域, 内在的に不規則なタンパク質のゆらぎの予測に成功している。
論文 参考訳(メタデータ) (2023-10-27T17:10:23Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Statistically Optimal Force Aggregation for Coarse-Graining Molecular
Dynamics [55.41644538483948]
粗粒(CG)モデルは、原子論的な分子動力学で可能な以上の大きな分子複合体をシミュレートする可能性がある。
CG力場を学習するための広く使われている方法論は、全原子分子動力学からCG表現への力のマッピングと、平均してCG力場とマッチングするものである。
我々は、全原子力のCG表現へのマッピングには柔軟性があり、最もよく使われるマッピング手法は統計的に非効率的であり、全原子シミュレーションにおける制約の存在においても、潜在的に誤りであることを示した。
論文 参考訳(メタデータ) (2023-02-14T14:35:39Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Symmetry-adapted graph neural networks for constructing molecular
dynamics force fields [10.820190246285122]
分子動力学シミュレーションのための力場を自動構築する対称性適応グラフニューラルネットワークフレームワークを開発した。
MDGNNは古典的分子動力学と第一原理分子動力学の両方の結果を正確に再現する。
論文 参考訳(メタデータ) (2021-01-08T09:32:24Z) - Coarse Graining Molecular Dynamics with Graph Neural Networks [3.0279361008741827]
本稿では,粗大な力場の機械学習のためのハイブリッドアーキテクチャを導入し,サブネットワークを介してそれぞれの特徴を学習する。
この枠組みは, 生体分子系における熱力学の再現に有効であることを示す。
論文 参考訳(メタデータ) (2020-07-22T13:20:08Z) - Molecular Latent Space Simulators [8.274472944075713]
本研究では、連続的な全原子シミュレーション軌道の運動モデルを学ぶための潜在空間シミュレータ(LSS)を提案する。
Trpタンパク質を応用して, 新規な超長尺合成折りたたみ路を創出する手法を実証する。
論文 参考訳(メタデータ) (2020-07-01T20:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。